um pequeno vaso tem a forma de um prisma triangular regular. sabe-se que todas as suas arestas têm a mesma medida e sua área lateral é 192 cm². Determine o seu volume
Soluções para a tarefa
Explicação passo-a-passo:
Primeiramente, temos que saber como se calcula o volume de um prisma, sendo a fórmula.
V=Ab*H
V=volume
Ab=Areá da base
H= altura ou comprimento lateral
Vamos descobrir H primeiro:
a área de um retângulo/quadrado é A=LXL, sendo L=lado,A=área como todas as arestas tem o mesmo tamanho, podemos substitui a área total na formula, assim:
192=X*X (porque x*x, pois, ambos lados tem a mesma medida)
192=X²
X=√192
X=13,85 , ou seja, cada aresta desse prisma tem 13,85 cm
agora que já sabemos H podemos calcular a área da base:
como não temos a altura do triangulo equilátero ( porque equilátero, pois, ele possui todos lados iguais, mesmas arestas) usaremos a formula para
A=l²*√3/4
A=13,85²*√3/4
A=191*√3/4
A=330/4
A=83 aproximadamente
agora que temos a área da base e a altura basta apenas multiplicar um pelo outro
V=83*13,85
V= 1149,55 cm³