um pedaço de arame de 40 cm de comprimento foi cortado em dois pedaços de comprimwnto diferentes. os pedaços foram usados para fazer dois quadrados que juntos formam uma area de 58 cm². determine o comprimento de cada pedaço em que o arame foi cortado
Soluções para a tarefa
Respondido por
0
4x + 4y = 40
x²+y² = 58
encontrando o valor de x
4x+4y=40
x=
x=10-y
agora substitua na segunda equação
(10-y)²+y²=58
2x²-20x+42=0
encontramos o delta
Δ=-20²-4.2.42
Δ=400-336
Δ=64
Formula de bhaskara
x=
x1==7
x2==3
Agora usamos na primeira formula 4x+4y=40
4x+4.7=40
4x=40-28
4x=12 cm
12 cm e 28 cm
x²+y² = 58
encontrando o valor de x
4x+4y=40
x=
x=10-y
agora substitua na segunda equação
(10-y)²+y²=58
2x²-20x+42=0
encontramos o delta
Δ=-20²-4.2.42
Δ=400-336
Δ=64
Formula de bhaskara
x=
x1==7
x2==3
Agora usamos na primeira formula 4x+4y=40
4x+4.7=40
4x=40-28
4x=12 cm
12 cm e 28 cm
Perguntas interessantes