Matemática, perguntado por caiozinho91, 11 meses atrás

Um observador afastado 48 m de um prédio de 24 m
de altura, o enxerga sob um ângulo de medida a.
Aproximando-se do prédio, o ângulo de observação
medido pelo solo passa a ser de 2a. Calcule a distância x
percorrida pelo observador.

Anexos:

Soluções para a tarefa

Respondido por andre19santos
6

A distância x percorrida pelo observador é de 30 metros.

Note que temos dois triângulos retângulos relacionados pela altura do prédio (cateto oposto) e a distância do observador ao prédio (cateto adjacente). Com isso, podemos utilizar a função tangente para relacionar ambos:

tan(α) = 24/48 = 0,5

tan(2α) = 24/(48-x)

Sabendo que tan(2x) = 2.tan(x)/(1 - tan²(x)), temos:

2.0,5/(1 - 0,5²) = 24/(48-x)

1/(0,75) = 24/(48 - x)

48 - x = 18

x = 30 m

Perguntas interessantes