Um motorista esta guiando seu carro a uma velocidade de 108 km/h quando percebe um obstaculo na pista. Sabendo-se que, no momentobem que os freios começam a ser acionados ele dispoe de 50 metros para parar, qual deve ser o valor minimo da desaceleraçao imprimida ao carro para que a colisao seja evitada em m/s2?
Soluções para a tarefa
Olá!!
Dados:
V= 108km/h= 30 m/s
ΔS= 50m
a=?
t=?
Fórmula:
I) V² = Vo² + 2aΔS
II) V = Vo + at
Aplicando fórmula:
(I)
0= (30)² +2.a.(50)
-a= 900/ 100
a= -9m/s² ( Desaceleração adquirida assim que os freios começam a ser acionados)
(II)
0 = 30 + (-9)t
t=30/9
t≈3,3 ( tempo de desaceleração até parar)
Espero ter ajudado!! ;)
O valor mínimo da desaceleração do carro é igual a - 9,00 m/s².
Para solucionar a questão devemos aplicar as equações do MRUV
Movimento retilíneo uniformemente variado
O movimento retilíneo uniformemente variado (MRUV) ocorre quando um móvel apresenta aceleração constante e diferente de zero.
A equação de Torricelli é dada por:
vf² = v0²+2aΔs
Sendo:
- vf = velocidade final
- vo = velocidade inicial
- a = aceleração
- Δs = deslocamento
No exercício é informado que o veículo percorre 50 metros até parar, sendo que sua velocidade no momento em que o freio foi acionado era de 108 km/h. Assim, a aceleração do veículo será calculada pela equação de Torricelli:
Convertendo de km/h para m/s:
108 km/h/3,6 = 30 m/s
Aplicando a equação de Torricelli:
0² = (30 m/s)² + 2.a. 50 m
a = - 900 m²/s²/(2.50 m)
a = - 9 m/s²
Continue estudando mais sobre a cinemática em:
https://brainly.com.br/tarefa/26969428