Matemática, perguntado por Marciel1986, 1 ano atrás

Um médico, após estudar o crescimento médio das crianças de uma determinada cidade, com idades que variam de 1 a 12 anos, obteve a fórmula: h=log(10^0,7.√i), em que h é a altura (em metros) e i é a idade (em anos). Qual a altura, em centímetros, de uma criança aos 2, 4, 6, 8, 10 e 12 anos?

Soluções para a tarefa

Respondido por bitencourtericotafpm
12
Olá Marciel! Esse é um exercício sobre logaritmos.

Sabemos que a altura é log(10^{0,7} *  \sqrt{i}) onde i é a idade.

Basta resolvermos cada um deles.
h_{2} = log(10^{0,7} * \sqrt{2})

h_{2} = log(7,08785782)

h_{2} = 0,850514997m

h_{4} = log(10^{0,7} * \sqrt{4}) 

h_{4} = log(5,01187234 * 2) 

h_{4} = 1,00103m

h_{6} = log(10^{0,7} * \sqrt{6}) 

h_{6} = log(5,01187234 * 2,44948974) 

h_{6} = 1,08907563m

h_{8} = log(10^{0,7} * \sqrt{8}) 

h_{8} = log(5,01187234 * 2,82842712) 

h_{8} = 1,15154499m

h_{10} = log(10^{0,7} * \sqrt{10})

h_{10} = log(5,01187234 * 3,16227766) 

h_{10} = 1,2m

h_{12} = log(10^{0,7} * \sqrt{12})

h_{12} = log(5,01187234 * 3,46410162) 

h_{12} = 1,23959062m

Logo, as alturas nas idades 2, 4, 6, 8, 10, 12 são aproximadamente, em centímetros e respectivamente, 85, 100, 108, 115, 120 e 123.

Abraços!

Perguntas interessantes