Contabilidade, perguntado por terezasilva2019, 10 meses atrás

Um maquinário de costura em série foi financiado em 12 parcelas mensais e iguais a R$ 1.560,83, sob o regime de taxa de juros compostos de 2,45% a.m.

Soluções para a tarefa

Respondido por lucasmendesbra
13

Resposta:

C = 16.059,30

Explicação:

De início, você calculou p montante fazendo a conta  12.(1.560,83), quando o montante de juros compostos é calculado usando a fórmula:

M = P*[(1+i)^n - 1]/[(1+i)^n*i], sendo que, no caso, temos:

P (prestação) = 1.560,83; i = 0,0245 a.m.;n = 12, dados estes que, substituídos na fórmula acima, a equação fica assim:

M = 1.560,83*[(1+0,0245)^12 - 1]/0,0245

Fazendo as contas, temos:

M = 1.560,83*0,33704/0,0245---->M = 21.471,92

Agora, substituindo esse valor na fórmula padrão do montante, ou seja M = C*(1+i)^n e fazendo as contas, temos:

21.471,92 = C*(1+0,0245)^12

---->

21.471,92 = C*1,0245^12

---->

21.471,92 = C*1,33704

---->

C = 21.471,92 = C*1,33704

---->

C = 21.471,92/1,33704

---->

C = 16.059,30

Respondido por manuel272
11

Resposta:

16059,21 <= Valor Financiado (Valor á vista)

Ver notas finais (importante)

Explicação:

.

Estamos perante uma Série Uniforme de Capitais

O que sabemos:

=> PMT = 1560,83

=> Taxa de juro 2,45% mensal (ou 0,0245 de 2,454/100)

=> "n" (número de períodos da Série) = 12

=> Como não há NENHUMA indicação em contrário vamos considerar o 1º pagamento ao fim de 30 dias

..o que implica considerar que é uma Série Postecipada

O que pretendemos saber

=> " Determine o valor à vista do maquinário em questão.."

Recordando que o "Valor á Vista" = Valor Presente (PV)

Formula a utilizar da Série Uniforme de Capitais (Postecipada):

PV = { PMT [(1 + i)ⁿ - 1]/[(1 + i)ⁿ . i] }

Onde

PV = Valor Presente, neste caso a determinar

PMT = 1560,83

i = Taxa de juro da aplicação, neste caso mensal e 0,0245

n = número de períodos, neste caso n = 12

RESOLVENDO

PV = { PMT [(1 + i)ⁿ - 1]/[(1 + i)ⁿ . i] }

substituindo..

PV = { 1560,83 [(1 + 0,0245)¹² - 1]/[(1 + 0,0245)¹² . 0,0245] }

PV = {1560,83 [(1,0245)¹² - 1]/[(1,0245)¹² . 0,0245] }

PV = 1560,83(1,337037 - 1)/(1,337037 . 0,0245)

PV = 1560,83 (0,337037)/(0,032757)

PV =  1560,83 (10,28889)

PV = 16059,21 <= Valor Financiado (Valor á vista)

Ver notas finais (importante)

Notas Importantes:

→ Não existe como opção o valor correto de 16.059,21

→ O gabarito indicado como correto no Portal é 16.060,63 (mas é errado)

→ O erro no gabarito do portal deve-se a erro de cálculo (ou de digitação) do "fator de capitalização"

..O "Fator de Capitalização" correto é (10,28889) e que foi considerado no cálculo do portal (por erro de digitação??) de (10,2898)

Sugestão:

Os alunos AVA devem copiar esta resolução e enviá-la ao vosso Tutor para que os gabaritos da prova sejam revistos (nos casos em que o portal NÃO TENHA a opção correta de 16.059,21)

Avisos:

⇒ O Brainly É INDEPENDENTE de qualquer portal de ensino AVA (ou outros)

⇒ O Brainly NÃO É UM CHAT de qualquer turminha AVA para que se postem aqui comentários e/ou respostas só para troca de gabaritos (ALGUMAS VEZES ATÉ ERRADOS) entre alunos AVA.

..isto será uma utilização indevida da plataforma brainly ..essas respostas e/ou comentários serão eliminados e os perfis eventualmente verificados!

 

Espero ter ajudado

Resposta garantida por Manuel272  

(colaborador regular do brainly desde Dezembro de 2013)

=> Se quiser saber mais sobre esta matéria consulte as tarefas abaixo

https://brainly.com.br/tarefa/20344500

https://brainly.com.br/tarefa/5425299

https://brainly.com.br/tarefa/10527456

https://brainly.com.br/tarefa/24752892

Anexos:
Perguntas interessantes