Matemática, perguntado por Meajudapfvrr, 1 ano atrás

Um jardim de forma retangular tem 96m² de área. Se aumentarmos o comprimento desse jardim em 3m e a largura em 2m, a área do jardim passa a ser 150m². Quais são as dimensões originais do jardim?

Soluções para a tarefa

Respondido por Alissonsk
5
Vamos imaginar que as medidas do jardim é "x" e "y". A área é dado pela multiplicação de suas medidas

x~.~y=96

Vamos aumentar o comprimento ( x ) e a largura ( y )

( x +3)~.~(y+2)=150 \\  \\  \\ x~.~y+2x+3y+6=150 \\  \\  \\ 96+2x+3y=144 \\  \\  \\ 2x+3y=48

Isolamos o "x"

x= \dfrac{96}{y}

Substituímos,

2( \dfrac{96}{y})+3y=48  \\  \\  \\  \dfrac{192}{y} +3y=48 \\  \\  \\ 192+3y^2=48y \\  \\  \\ 3y^2-48y+192=0~~~simplificando~por~3 \\  \\  \\ y^2-16y+64=0

Resolveremos pelo produto e soma. Temos que encontrar dois valores que somados resultem em - b / a e multiplicado resultem em  c / a

__8__ + __8__ = 16
__8__ . _8__ = 64

y' = y'' = 8

Ou seja, a medida de "y" = 8 m

x = 96 / 8

x = 12 m

O comprimento é 12 m e a largura 8 m.

Meajudapfvrr: MUITO obrigada. Sério
Alissonsk: De nada!
Respondido por AlissonLaLo
4

\Large\boxed{\boxed{\boxed{{Ola\´\ }}}}}

Para encontrarmos a área de um retângulo , usamos a seguinte fórmula:

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

A = C.L  ( C = Comprimento e L = Largura )

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

A questão nos fala que a área inicial é 96cm² e que a área com o aumento é de 150 cm² , com isso montaremos nossa equação linear.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

C.L=96

(C+3).(L+2)=150

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

C=96/L

CL+2C+3L+6 = 150

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Como (CL) = 96 , vamos substituir na fórmula:

96+2C+3L+6=150

2C+3L = 150-96-6

2C+3L = 48

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Substituindo o valor do C nesta fórmula temos:

2(96/L) +3L = 48

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

MMC = L

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

2.96+3L² = 48L

192+3L²=48L

3L²-48L+192=0

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Temos uma equação quadrática:

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

a = 3

b = - 48

c= 192

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Fórmula:

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

L = \dfrac{-B\pm\sqrt{B^2-4.A.C} }{2.A} \\ \\ \\ L = \dfrac{-(-48)\pm\sqrt{48^2-4.3.192} }{2.3}\\ \\ \\ L = \dfrac{48\pm\sqrt{2304-2304} }{6}\\ \\ \\  L = \dfrac{48\pm\sqrt{0} }{6} \\ \\ \\ L = \dfrac{48\pm{0} }{6}\\ \\ \\ L^1= \dfrac{48\pm{0} }{6} = 8\\ \\ \\L^2 = \dfrac{48\pm{0} }{6}=8

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

S { 8 }

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Substituindo o valor do L na equação do cumprimento  temos :

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

96/L = C

96/8 = C

12 = C

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Como o comprimento é 12 , vamos substituir na fórmula da área para achar a largura.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

C.L=96

12.L = 96

L = 96/12

L = 8

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Logo as dimensões originais são 8 de largura e 12 de comprimento.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas interessantes