História, perguntado por burrodemais45, 11 meses atrás

um jardim de forma retangular tem 96 metros quadrados de área se aumentarmos o comprimento desse Jardim em 3 metros de largura em 2 m a área do Jardim passa a ter 150 metros quadrados calcule as dimensões originais do jardim

Soluções para a tarefa

Respondido por hannasmith3113
8

As dimensões originais do jardim são: 8 X 12.

Chegamos a esse valor por meio de uma resolução lógica:

Se o "Terreno" é um retangulo, a sua fórmula para a área é base x altura.

Logo, vemos que para se obter o valor de 150m²  temos que multiplicar:

10 X 15.

Como na questão está exposto, é aumentado do original, o valor de 2 metros de um lado e 3 metros do outro, então subtraímos:

10 - 2 = 8

15 - 3 = 12

Então obtemos o valor original do jardim.

8 x 12 = 96m²


Obs.: Essa questão deveria estar na matéria de Matemática ;)

Respondido por AlissonLaLo
1

\Large\boxed{\boxed{\boxed{{Ola\´\ }}}}}

Para encontrarmos a área de um retângulo , usamos a seguinte fórmula:

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

A = C.L  ( C = Comprimento e L = Largura )

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

A questão nos fala que a área inicial é 96cm² e que a área com o aumento é de 150 cm² , com isso montaremos nossa equação linear.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

C.L=96

(C+3).(L+2)=150

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

C=96/L

CL+2C+3L+6 = 150

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Como (CL) = 96 , vamos substituir na fórmula:

96+2C+3L+6=150

2C+3L = 150-96-6

2C+3L = 48

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Substituindo o valor do C nesta fórmula temos:

2(96/L) +3L = 48

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

MMC = L

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

2.96+3L² = 48L

192+3L²=48L

3L²-48L+192=0

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Temos uma equação quadrática:

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

a = 3

b = - 48

c= 192

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Fórmula:

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

L = \dfrac{-B\pm\sqrt{B^2-4.A.C} }{2.A} \\ \\ \\ L = \dfrac{-(-48)\pm\sqrt{48^2-4.3.192} }{2.3}\\ \\ \\ L = \dfrac{48\pm\sqrt{2304-2304} }{6}\\ \\ \\  L = \dfrac{48\pm\sqrt{0} }{6} \\ \\ \\ L = \dfrac{48\pm{0} }{6}\\ \\ \\ L^1= \dfrac{48\pm{0} }{6} = 8\\ \\ \\L^2 = \dfrac{48\pm{0} }{6}=8

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

S { 8 }

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Substituindo o valor do L na equação do cumprimento  temos :

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

96/L = C

96/8 = C

12 = C

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Como o comprimento é 12 , vamos substituir na fórmula da área para achar a largura.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

C.L=96

12.L = 96

L = 96/12

L = 8

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Logo as dimensões originais são 8 de largura e 12 de comprimento.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Espero ter ajudado!

Perguntas interessantes