Matemática, perguntado por Marcio3107, 1 ano atrás

Um imóvel no valor total de R$ 500.000,00 vai ter 80% desse valor financiado em 20 anos, isto é, 240 prestações a serem pagas no final de cada mês, a uma taxa de juros efetiva de 1,2% ao mês, pelo Sistema de Amortização Francês - Tabela PRICE. O valor do coeficiente de financiamento, o valor das prestações, o valor do juro na primeira prestação, o valor da amortização da primeira prestação e o saldo devedor logo após o pagamento da primeira prestação, serão em reais, respectivamente, de



0,012726767; 5.090,71; 4.800,00; 290,71; 395.200,00

0,012726767; 5.090,71; 4.800,00; 290,71; 399.709,29

0,012575857; 5.030,34; 4.600,00; 430,34; 397.769,66

0,012575857; 5.030,34; 4.800,00; 230,34; 395.200,00

0,012575857; 5.090,00; 4.600,00; 490,00; 399.510,00

Soluções para a tarefa

Respondido por bokomoko
3
Na tabela price, o valor da prestação é constante porém os valores de amortização e juros de cada prestação mudam. começa-se pagando mais principal e apenas um pouco dos juros. Nas últimas prestações, paga-se mais os juros e quase nada de capital.

O coeficiente é o fator que multiplicado pelo principal, dá o valor da prestação. Portanto, se calcularmos o valor da prestação e a dividirmos pelo valor do principal teremos o coeficiente.

A prestação é dada por
Prest = financiado *  \frac{ (1+taxa)^{n}*taxa}{(1+taxa)^{n}-1}

onde n é o número de prestações. 

No caso o valor financiado é 80% dos 500.000, portanto 80/100 * 500.000 = 400.000 
O n é 240 meses (20 anos = 240 meses) 
a taxa é 1,2% = 1,2/100 = 0,012

Então temos
Prest = 400000 * \frac{ (1+0,012)^{240}*0,012}{(1+0,012)^{240}-1}
5090,71 

Em Excel essa fórmula é =pgto( 1,2% ; 240 ; 400000)
o coeficiente então é  0,012727

O valor da amortização é igual ao valor da prestação menos o valor dos juros.

O valor dos juros na primeira prestação é igual ao valor do principal vezes a taxa de juros. No caso, 400000 * 1,2% = 4800
Portanto, 5090,71 - 4800 =  290,71 
Então o saldo devedor após o pagamento da primeira prestação será

400.000 de saldo inicial + 1,2% de juros (= 4800) - 5090,71 (1a prestação) = 
R$399.709,29

é a segunda alternativa



Perguntas interessantes