Um homem de 1,75 m encontra-se a 2,5 m de distância de uma árvora, conforme ilustração a seguir. Sabendo-se que o ângulo alfa é de 60º, determine a altura dessa árvore. ( Use √3=1,7)
A) 2,50m
B)3,47m
C)3,65
D)4,05m
E) 6 m
Soluções para a tarefa
Usando uma das razões trigonométricas, temos que a alternativa que corresponde à altura da árvore é a letra e) 6 m.
⠀
Temos que um homem de 1,75 m de altura está a 2,5 m de distância de uma árvore. Queremos determinar a altura dessa árvore, e para isso vamos usar nossos conceitos sobre trigonometria num triângulo retângulo.
⠀
Imaginemos que, rente à cabeça do homem se forma um ângulo alfa (α) (que equivale à 60º de acordo com o enunciado); a distância entre esse homem até a árvore é o cateto adjacente ao ângulo; e a altura da árvore (vamos chamar de h) é o cateto oposto ao ângulo. Isto é:
- cateto adjacente = 2,5 m
- cateto oposto = h
Assim, tendo a medida desse dois lados podemos usar a razão trigonométrica: tangente, que é a razão entre o cateto oposto e o cateto adjacente.
⠀
Portanto temos que:
- Obs.: pela tabela de ângulos notáveis, sabemos que tg(60º) = √3. Dessa forma:
Contudo, não podemos esquecer de levar em consideração a altura do homem, que é de 1,75 m, assim:
Dessa forma, a alternativa e) 6 m responde à questão.
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Veja mais sobre:
https://brainly.com.br/tarefa/38858995
https://brainly.com.br/tarefa/38413418