Um haltere consiste em uma bola de 500 g e uma bola de 2,0 kg conectadas por uma haste de massa desprezível de 50 cm de comprimento. Qual a posição do centro de massa desse sistema? Qual é a velocidade de cada bola se elas girarem sobre o centro de massa a 40 rpm?
Soluções para a tarefa
O centro de gravidade se encontra em: x = 0,3 m
A velocidade para a bola de 500g será 0,26 m/s
A velocidade para a bola de 2kg será 0,067 m/s
Neste caso, o centro de gravidade é dado pela divisão entre o somatório do produto entre as massas e a respectiva distância a um eixo neutro que em geral é colocado no meio da haste e o somatório das massas:
CG =
Se a haste tem 50 cm, pode-se e os pesos de 500 g e 2,0 kg acoplado nas pontas, temos que:
OBS: Lembre-se de passar para o Sistema internacional de Medidas
CG = (-0,5*0,25+2*0,25)/2,5 = (0,375)/2,5 = 0,15
Logo o centro de gravidade se encontra em: x = 0,15 e y = 0
Se a bola gira a 40 rpm, ou seja 40 rotações por minuto e a relação entre a Velocidade e o raio de giro é:
V = ωxR
A velocidade da bola de 500g será:
V = 40/60 * (0,25+0,15) = 0,26 m/s
A velocidade da bola de 2kg será:
V = 40/60*(0,10) = 0,067 m/s
OBS: É dividido por 60 para transformar em RPS
Espero ter ajudado :)