um grupo de crianças brinca em torno de varias cadeiras.se duas criança sentam em cada cadeira,uma crianças fica de pé. Se três. crianças sentam em cada cadeira,uma cadeira fica vazia.o número de crianças é?
Soluções para a tarefa
Respondido por
9
Olá!
As opções do gabarito são:
a) 6
b) 7
c) 8
d) 9
e) 10
Vamos considerar n o número de cadeiras e c o número de crianças.
Se duas crianças sentam em cada cadeira, uma criança fica de pé
então
C = 1 + 2*n
Se três crianças sentam em cada cadeira, uma cadeira fica vazia
então
C = (n-1)*3
Estamos falando do mesmo cenário, então as duas equações são equivalentes:
1 + 2*n = (n-1)*3
1 + 2n = 3n - 3
1 + 3 = 3n - 2n
n = 4
Sabemos o número de cadeiras é igual a 4.
Vamos descobrir o número de crianças:
C = 1 + 2*n
C = 1 + 2*4
C = 1 + 8
C = 9
São 9 crianças.
As opções do gabarito são:
a) 6
b) 7
c) 8
d) 9
e) 10
Vamos considerar n o número de cadeiras e c o número de crianças.
Se duas crianças sentam em cada cadeira, uma criança fica de pé
então
C = 1 + 2*n
Se três crianças sentam em cada cadeira, uma cadeira fica vazia
então
C = (n-1)*3
Estamos falando do mesmo cenário, então as duas equações são equivalentes:
1 + 2*n = (n-1)*3
1 + 2n = 3n - 3
1 + 3 = 3n - 2n
n = 4
Sabemos o número de cadeiras é igual a 4.
Vamos descobrir o número de crianças:
C = 1 + 2*n
C = 1 + 2*4
C = 1 + 8
C = 9
São 9 crianças.
Perguntas interessantes