Física, perguntado por emilynarruda, 10 meses atrás

Um fio metálico apresenta uma resistência elétrica R, se dobrar o seu tamanho e reduzir sua área de secção transversal pela metade sua resistência se tornará igual a: a) 4 R b) R c) R/2 d) 2 R e) 3 R/2

Soluções para a tarefa

Respondido por dansousah567
1

Resposta:

A) 4R

Explicação:

Pela Segunda lei de Ohm, cuja fórmula é:

R = p  \frac{l}{a}

sendo

R: resistência

p: resistividade do fio

l: comprimento do fio

a: área da secção transversal do fio

se dobrar o tamanho do fio: 2l

se diminuir pela metade a area: a/2

termos a relação:

R' = p \frac{2l}{ \frac{a}{2} }

em multiplicação de fração a de baixo multiplica invertida a de cima:

R' = p \frac{2l}{1}  \times  \frac{2}{a}

R' = p \frac{4l}{a}

perceba que o denominador do fio do primeiro fio tem l como denominador.

já o segundo fio, que possui o dobro do comprimento do fio e metade da área da secção transversal, possui 4l como denominador.

ou seja, a resistência se tornará 4R

repsosta: A) 4R

espero ter ajudado, tmj

Perguntas interessantes