Matemática, perguntado por iuriccastro, 11 meses atrás

Um fio é amarrado do topo mais alto de um edifício ao topo mais alto de um poste de 4m de altura . Sabendo que o fio tem um comprimento 20 m e que forma um ângulo de 30º com a horizontal, qual é a altura do edifício?

Soluções para a tarefa

Respondido por renatoaugustobh
0

Olá!

Fiz um desenho para facilitar a visualização do problema. Observe que o topo do poste, o topo do edifício e uma parte de sua parede, o fio e a horizontal formam um triângulo retângulo.

Utilizando as Razões Trigonométricas para um Triângulo Qualquer, e aplicando a lei dos senos, temos que:

Um lado do triângulo, dividido pelo seno de seu ângulo oposto, será igual a qualquer dos outros lados deste triângulo divididos pelo seno de seus respectivos ângulos opostos.

A partir deste conhecimento, podemos efetuar os cálculos:

\frac{h}{sen(30)} = \frac{20}{sen(90)}

\frac{h}{0,5} = \frac{20}{1}

O produto dos meios é igual ao produto dos extremos. Então:

1h = 20 · 0,5

h = 10m

Encontramos a altura do "pedaço" da parede que forma o triângulo retângulo. Agora, para encontrarmos a altura total do edifício, vamos somar esta altura com a altura do poste:

10 + 4 = 14

Resposta: O edifício tem 14 metros de altura.

Abraços!

Anexos:
Perguntas interessantes