Matemática, perguntado por emillypassosborges, 6 meses atrás

Um estudo sobre as operações de uma fábrica revelou que, a um preço p, não superior a R$ 200,00, a mesma consegue vender x peças semanais, onde x = 800 − 4p. Nesse estudo, consta que o custo de produção de x peças é dado através do modelo linear 200 + 10x reais.

Sendo assim, quantas peças a fábrica deve vender para que o seu lucro seja máximo?

Soluções para a tarefa

Respondido por matematicman314
0

A fábrica deve vender 420 peças para que o seu lucro seja máximo.

\dotfill

Primeiramente, vamos encontrar a expressão que dá a receita obtida pela fábrica em função do número p de unidades produzidas e vendidas. Se, vide enunciado, a fábrica consegue vender x peças semanais segundo a expressão x = 800 - 4p, logo tem como receita:

R(p) = p * (800 - 4p)

Observe que a receita está em função do número de unidades vendidas (obviamente) e do preço praticado.

Simplificando a expressão:

R(p) = -4p² + 800p

Encontraremos também a função custo em relação ao preço:

C(p) = 200 + 10*(800 - 4p)

C(p) = 200 + 8000 - 40p

C(p) = 8200 - 40p

Sabe-se, por outro lado, que o lucro é a diferença entre o que se ganha e o que se gasta. Assim:

L(p) = R(p) - C(p)

L(p) = -4p² + 800p - (8200 - 40p)

L(p) = -4p² + 840p - 8200

A fim de encontrar o lucro máximo, queremos o p que produz o valor máximo nessa função. Em outras palavras, a coordenada horizontal do vértice dessa parábola. Derivando e igualando a zero:

L'(p) = 0

- 8p + 840 = 0

p = 105

Substituindo na expressão x = 800 − 4p,

x = 800 − 4(105)

x = 800 - 420

x = 420

Enfim, a fábrica deve vender 420 peças para que o seu lucro seja máximo.

Até mais!

Perguntas interessantes