Matemática, perguntado por israel208, 1 ano atrás

um estacionamento tem 10 vagas uma ao lado da outra inicialmente todas livros no carro preto e um carro rosa chegam aos estacionamento de quantas maneiras diferentes esses carros podem ocupar duas vagas de forma que haja pelo menos uma vaga livre entre eles

Soluções para a tarefa

Respondido por 25bbb
5
8 . 9 = 72

8 = é o número de vagas que sobram quando o carro rosa e o preto estão estacionados. 
9 = o número de vagas menos ( 1 ) a vaga livre entre eles

Usuário anônimo: vdd
luizfernandomap6k24s: Primeiropasso: calcular todas as possibilidades possíveis, então achei que 10•9=90
Depois, calculei demais possibilidades que o problema não quer, então = 9•2=18
consequentimente subtrair 18 de 90=
e encontrei 72 formas diferentes.
Respondido por AlissonLaLo
2

Olá !


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |



São 10 vagas , na 1º possibilidade temos :



O carro A na vaga 1 e o carro B em uma das vagas ( 3,4,5,6,7,8,9,10=8 Possibilidades) pois a 2 tem que ficar livre entre eles.



2º Possibilidade :



O carro A na vaga 2 , e o carro B em uma das vagas ( 4,5,6,7,8,9,10=7 Possibilidades)



3º Possibilidade :



O carro A na vaga 3 , e o carro B em uma das vagas ( 1,5,6,7,8,9,10=7 possibilidades) a 2 e a 4 tem que ficar livre entre eles.



Temos 7 possibilidades ate a vaga 9........



10º Possibilidade :



O carro A na vaga 10 , e o carro B em uma das vagas ( 1,2,3,4,5,6,7,8=8 Possibilidades) a 9 tem que ficar livre entre eles.



Logos temos 2 vezes 8 possibilidades e 8 vezes 7 possibilidades:




2*8 + 8*7 = 16+56 = 72




Portanto são 72 possibilidades...



Espero ter ajudado!


Perguntas interessantes