Matemática, perguntado por Aguynis, 1 ano atrás

um estacionamento tem 10 vagas uma ao lado da outra inicialmente todas livres um carro preto e um carro rosa chegam a esse estacionamento de quantas maneiras diferentes esses carros ocupam duas vagas de forma que haja pelo menos uma livre entre elas?

Soluções para a tarefa

Respondido por Lukyo
4

Vamos representar as vagas por letras do alfabeto.

     P = vaga ocupada pelo carro preto

     R = vaga ocupada pelo carro rosa

     X = vaga livre.


Primeiramente, vamos calcular o número total de maneiras que esse dois carros podem ocupar duas vagas, sem restrições:

     \mathsf{P~R~X~X~X~X~X~X~X~X}


Essa quantidade é o número de anagramas da palavra acima (permutações de 10 elementos, com repetições de 8):

     \mathsf{n_1=P_{10}^8}\\\\ \mathsf{n_1=\dfrac{10!}{8!}}\\\\\\ \mathsf{n_1=\dfrac{10\cdot 9\cdot \diagup\!\!\!\! 8!}{\diagup\!\!\!\! 8!}}\\\\\\ \mathsf{n_1=90}


Agora vamos calcular de quantas formas os dois carros ocupam as vagas de modo que eles estejam em vagas vizinhas.

Podemos pensar em "PR" como se fosse uma única letra da palavra:

     \mathsf{"PR"~X~X~X~X~X~X~X~X}


Agora temos uma palavra com 9 letras, sendo 8 repetidas. Devemos considerar também a quantidade de anagramas de "PR", pois os carros vizinhos podem aparecer em qualquer ordem:

     \mathsf{n_2=P_9^8\cdot P_2}\\\\ \mathsf{n_2=\dfrac{9!}{8!}\cdot 2!}\\\\\\ \mathsf{n_2=\dfrac{9\cdot 8!}{8!}\cdot 2}\\\\\\ \mathsf{n_2=18}


Como queremos saber de quantas maneiras diferentes os carros ocupam duas vagas, de modo que haja pelo menos alguma livre entre elas, basta tomarmos o total e subtrair pela quantidade de maneiras nas quais os carros ocupam vagas vizinhas:

     \mathsf{n=n_1-n_2}\\\\ \mathsf{n=P_{10}^8-P_9^8\cdot P_2}\\\\ \mathsf{n=90-18}

     \mathsf{n=72\quad\longleftarrow\quad esta~\acute{e}~a~resposta.}


Dúvidas? Comente.


Bons estudos! :-)

Respondido por AlissonLaLo
1

Olá !


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |



São 10 vagas , na 1º possibilidade temos :



O carro A na vaga 1 e o carro B em uma das vagas ( 3,4,5,6,7,8,9,10=8 Possibilidades) pois a 2 tem que ficar livre entre eles.



2º Possibilidade :



O carro A na vaga 2 , e o carro B em uma das vagas ( 4,5,6,7,8,9,10=7 Possibilidades)



3º Possibilidade :



O carro A na vaga 3 , e o carro B em uma das vagas ( 1,5,6,7,8,9,10=7 possibilidades) a 2 e a 4 tem que ficar livre entre eles.



Temos 7 possibilidades ate a vaga 9........



10º Possibilidade :



O carro A na vaga 10 , e o carro B em uma das vagas ( 1,2,3,4,5,6,7,8=8 Possibilidades) a 9 tem que ficar livre entre eles.



Logos temos 2 vezes 8 possibilidades e 8 vezes 7 possibilidades:




2*8 + 8*7 = 16+56 = 72




Portanto são 72 possibilidades...



Espero ter ajudado!

Perguntas interessantes