Física, perguntado por ghh43, 6 meses atrás

um corpo percorreu uma distância de 50 m seguindo os passos mostrandos na figura, em 10s.

calcule Qual foi o valor de sua velocidade escalar e de sua velocidade vetorial no deslocamento de A para B?​

Anexos:

Soluções para a tarefa

Respondido por jootaronunes
0

Resposta:

a) 5m/s; b) 2m/s.

Explicação:

Velocidade escalar média é a medida da rapidez com que a posição de um móvel varia e pode ser calculada através da razão entre a distância total percorrida pelo corpo e o intervalo de tempo. Nesse caso, o corpo percorreu 50 m em 10 s. Para sabermos a velocidade escalar média, fazemos a seguinte operação:
v_{e}  = \frac{s}{\delta t}
sendo,
v_{e} : velocidade escalar média;
s : distância total percorrida pelo corpo (trajetória);
\delta t : variação do tempo (que é calculada pela expressão: tempo final - tempo inicial).
Temos a distância total que é 50 m e a variação do tempo (10 - 0) = 10 s. Vamo então encontrar a velocidade escalar média:
v_{e} = \frac{50 m}{10 s} = \frac{5m}{1s} = 5 \frac{m}{s}
Lê-se: 5 metros por segundo, ou seja, o corpo, em média, percorre 5 metros a cada segundo.

Para sabermos a velocidade vetorial, precisamos descobrir qual foi o seu deslocamento e, para isso, precisamos traçar o vetor deslocamento de A até B. Em sua representação gráfica, a origem do vetor estará no ponto A e sua extremidade no ponto B, de forma que seja uma seta (origem) -----> (extremidade).
Vamos encontrar o vetor deslocamento. Seu módulo será o tamanho do vetor deslocamento, que é chamado de módulo.
Obs.: Módulo é o tamanho do vetor.
A componente y do vetor é 12 m.
A componente x do vetor é 16 m.
Fórmula para encontrar o módulo (comprimento) de qualquer vetor:
Seja W um vetor no plano cartesiano, temos suas componentes x e y que são (a, b). Logo, o IWI = \sqrt{a^{2} + b^{2} }

Vamos chamar o vetor deslocamento de S e ISI seu módulo.
Sendo assim, temos que:
ISI = \sqrt{12^{2} + 16^{2}   }
ISI = \sqrt{144 + 256}
ISI = \sqrt{400} = 20 m.
Logo, a velocidade vetorial média será:
v = \frac{ISI}{\delta t}
v = \frac{20 m}{10 s} = \frac{2m}{1s} = 2 \frac{m}{s}
Ou seja, no trajeto mais curto possível, o corpo percorreria 2 metros a cada segundo para chegar no seu destino em 10 segundos.
Espero que tenha ajudado a compreender melhor a diferença entre trajetória e deslocamento. O deslocamento não leva em consideração a trajetória, mas sim o ponto inicial e o ponto final que foi observado.

Perguntas interessantes