Física, perguntado por Felipe10fst, 1 ano atrás

Um corpo é abandonado de uma altura de 4m em relação ao solo. Admitindo g = 9,8m/s² e desprezando a resistência do ar, determine a velocidade com que ele atinge o solo.

Soluções para a tarefa

Respondido por cledersonbc
1
Tem algumas formas de se resolver. Irei resolver de duas formas:

Energia Potencial Gravitacional
E_{pg} = m \cdot h \cdot g

m = massa [kg]
h = altura [m]
g = aceleração gravitacional [m/s²]

Energia Cinética
E_{c} = \frac{m \cdot V^{2}}{2}

m = massa [kg]
v = velocidade [m/s]

Igualando as duas energias:
m \cdot h \cdot g = \frac{m \cdot V^{2}}{2} \\\\
2m h g = m \cdot V^{2} \\\\
\frac{2m h g}{m} = V^{2} \\\\
V = \sqrt{2 h g}

Agora que temos a fórmula de velocidade para essa situação:
V = \sqrt{2 \cdot 4 \cdot 9.8} \\
V = \sqrt{78.4} \\\\
\boxed{V \approx 8.85 \text{ m/s}}

Outra forma é utilizar a fórmula da equação de Torricelli.
V^{2} = V_0^{2} + 2a \Delta S \\
V^{2} = 0 + 2 \cdot 9.8 \cdot 4 \\
V = \sqrt{78.4} \\
V \approx 8.85 \text{ m/s}
Perguntas interessantes