Um corpo desloca-se sobre uma trajetória retilínea obedecendo a função horária s= -40 - 2t + 2t² (no SI) pede-se:
A: posição inicial
B: velocidade inicial
C: aceleração
preciso urgente das respostasssssss
Soluções para a tarefa
Resposta:
ʟᴇᴛʀᴀ A)
S = 9 - 6t + t²
a) Comparando: S = So + Vo.t + a.t²/2
Temos: So = 9 m
b) Novamente: Vo = -6 m/s
c) at²/2 = t²
2t² = at²
a = 2 m/s²
d) Substituímos:
64 = 9 - 6t + t²
t² - 6t- 55 = 0
Δ = 36 + 220
Δ = 256
Adotamos o valor positivo para t
t = (6 + 16)/2
t = 22/2
t = 11 s
Resposta:
a) -40
b) -2
c) 4
Explicação:
Vamos lá, temos nessa questão uma função horária de um MUV !
a) Para determinar a posição inicial, basta substituir o T por 0, T=0 e teremos
S = -40 - 2(0) + 2(o)^2
S = -40
b) Para determinar a velocidade inicial teremos que derivar a função espaço que nos dará:
V(T) = 0 -2 + 4T
em seguida devemos substituir T por 0
V(0) = -2 + 4(0)
v(0) = -2
c) Para determinar a aceleração inicial teremos que derivar a função velocidade que nos dará:
A(T) = 4
A aceleração será igual a 4, sendo constante característica do MUV.
Espero ter ajudado !