Física, perguntado por mateuspitaquembo, 5 meses atrás

um carrinho de 3kg move_se horizontalmente com uma velocidade de 5m/s um bloco de 2kg cai sobre o carrinho aderindo_se a ele.calcule a velocidade final do conjunto​

Soluções para a tarefa

Respondido por Kin07
1

A energia não pode ser criada ou destruída mas pode ser transformada de uma espécie a outra. Este enunciado é uma generalização do princípio da conservação da energia.

O movimento de uma partícula de massa m, é o momento linear, definido por:

\boxed{ \displaystyle \sf  \overrightarrow{ \sf P} =  m \cdot \overrightarrow{\sf V}  } \quad  \gets {\text{\sf \textbf{momento linear de uma part{\'i}cula}   }}

Essa equação também pode ser escrita na forma:

\displaystyle \sf \overrightarrow{ \sf F_R} = \dfrac{d{ \overrightarrow{\sf P}}  }{dt}  = \dfrac{d}{dt} \left( m \cdot \overrightarrow{ \sf V} \right)  =  m \dfrac{d\overrightarrow{\sf V}  }{dt}

\boxed{\displaystyle \sf \overrightarrow{ \sf F_R} =  m \cdot \overrightarrow{ \sf a} }  \quad  \gets {\text{\sf \textbf{ Segunda Lei de Newton } }}

Dados do enunciados:

\displaystyle \sf  Dados: \begin{cases} \sf m_1 = 3kg \\  \sf V_1 = 5\: m/s \\   \sf m_2 = 2\: kg\\   \sf V_2 = \:?\: m/s \end{cases}

Devemos aplicar a expressão que traduz a Lei da Conservação do Momento Linear:

\displaystyle \sf m_1 \cdot V_1 =  m_2 \cdot V_2

\displaystyle \sf V_2 = \dfrac{m_1 \cdot V_1}{m_2}

\displaystyle \sf V_2 = \dfrac{3 \times 5}{2}

\displaystyle \sf V_2 = \dfrac{15}{2}

\boxed{ \boxed { \boldsymbol{  \displaystyle \sf V_2 = 7, 5 \: m/s }}}

Para mais conhecimento acesse:

https://brainly.com.br/tarefa/7485251

https://brainly.com.br/tarefa/2529653

https://brainly.com.br/tarefa/7701385

Perguntas interessantes