Um caminhão de 50 t está numa estrada, sua velocidade inicial é de 90 km/h e seus freios hidráulicos podem exercer uma força máxima, constante, de módulo de 20 kN. Ao longe, o motorista identifica um posto policial, pelo qual ele deve trafegar a, no máximo, 40 km/h. A mínima distância em que o motorista deve acionar os freios para que possa passar pelo posto sem ultrapassar o limite de velocidade é de:
Soluções para a tarefa
Respondido por
5
Resposta:
627 m
Explicação:
aplicando Torricelli:
v^2=v0^2 + 2.a.Dx 》 v^2 é a velocidade que você quer chegar, portanto 40 km/h = 11,11 m/s. 90 km/h = 25 m/s
logo: 11,11^2 = 25^2 + 2.a.Dx
você fica com duas icógnitas aindas, então terá que usar outros dados do enunciado para conseguir uma delas... dados a massa do caminhão e a força máxima dos freios, da para obter a aceleração 》 F = m.a 》 20.000 = 50.000.a 》 a=0,4 m/s^2
aplicando a primeira fórmula:
11,11^2 = 25^2 + 2. (-0,4). Dx (lembre-se que a intenção é desacelerar, portanto a aceleração é negativa)
seguindo: -501.5679 = -0.8. Dx
Dx = 626,9598 aproximando-se de 627 m
gisistertj:
Muito obrigada! Vc me salvou!!
Perguntas interessantes
Física,
8 meses atrás
Química,
8 meses atrás
Inglês,
11 meses atrás
Química,
11 meses atrás
Administração,
1 ano atrás