Física, perguntado por Brulipi, 1 ano atrás

Um caminhão com 2 toneladas percorre uma rodovia com velocidade de 90 km/h. Durante o trajeto, o caminhão passará por uma curva fechada com raio de 1 km. Ao passar pela curva, a força centrípeta sentida pelo veículo não poderá ser superior a sua força peso, pois, se isso ocorrer, o caminhão corre o risco de tombar ou sair do percurso da curva ocasionando um grave acidente. Na velocidade apresentada pelo caminhão, ele conseguirá efetuar a curva sem a necessidade de reduzir a sua velocidade?

Soluções para a tarefa

Respondido por LucasStorck
38
Boa noite!!

1 tonelada = 1000 Kg
1 km = 1000 m

Calculando a Força Peso do caminhão:

F_p = m.g \\\\ F_p = 2000.10 \\\\ F_p = 20000\ N

Calculando a Força Centrípeta do caminhão:

F_c_p = m. \frac{v^{2}}{R}

F_c_p = 2000. \frac{90^{2}}{1000} \\

F_c_p = 2000. \frac{8100}{1000} \\ 

F_c_p = 2\times8100 \\

F_c_p = 16200\ N

Portanto, como a Força Centrípeta é menor que a Força Peso, o caminhão conseguirá fazer a curva sem reduzir sua velocidade.

Bons estudos!
Perguntas interessantes