Matemática, perguntado por frangasperinip4zmpo, 11 meses atrás

Um batalhão possui 50 soldados, incluindo os soldados André e Bruno. Determine de quantas formas podemos montar um time com 4 soldados para uma missão, de modo que André e Bruno não sejam escolhidos simultaneamente para a missão.

Soluções para a tarefa

Respondido por silvageeh
4

Podemos montar um time de 4 soldados para uma missão, de modo que André e Bruno não sejam escolhidos simultaneamente para a missão, de 229172 maneiras.

Primeiramente, vamos determinar quantos times de 4 soldados podemos montar com os 50 soldados disponíveis.

Como a ordem não é importante, então utilizaremos a Combinação.

Sendo assim,

C(50,4)=\frac{50!}{4!46!}=230300

ou seja, podemos montar 230300 times distintos.

Agora, vamos calcular em quantos times os soldados André e Bruno estão presentes. Sendo assim, precisamos escolher mais 2 soldados:

C(48,2)=\frac{48!}{2!46!}=1128

ou seja, André e Bruno estão juntos em 1128 times.

Portanto, em 230300 - 1128 = 229172 times, André e Bruno não estão juntos.

Perguntas interessantes