Um barco navega na direção (AB) ̅, próximo a um farol P, conforme a figura a seguir.
No ponto A, o navegador verifica que a reta (AP) ̅, da embarcação ao farol, forma um ângulo de 30° com a direção (AB) ̅. Após a embarcação percorrer 1.000 m, no ponto B, o navegador verifica que a reta (BP) ̅, da embarcação ao farol, forma um ângulo de 60° com a
mesma direção (AB) ̅.
Seguindo sempre a direção (AB) ̅, a menor distância entre a embarcação e o farol será equivalente, em metros, a:
Soluções para a tarefa
Respondido por
13
olha não sei se está correto kkk, mas foi o que eu deduzi :
sabemos que essa triangulo faz angulo de 30° e também de 60°. Pela regrinha da trigonometria, o cosseno de 30° é hipotenusa/2 e o seno é hipotenusa/2 x raiz de 3.
seguindo esse principio:
hipotenusa : 1000 m
cos 30° = 1000/2 = 500
seno 30° ( que é no caso a distancia entre o barco e o farol) = 500 x raiz de 3 raiz de 3 = 1,7 , então :
distancia igual á = 850 ! [
espero ter ajudado e espero também que esteja correto haha
sabemos que essa triangulo faz angulo de 30° e também de 60°. Pela regrinha da trigonometria, o cosseno de 30° é hipotenusa/2 e o seno é hipotenusa/2 x raiz de 3.
seguindo esse principio:
hipotenusa : 1000 m
cos 30° = 1000/2 = 500
seno 30° ( que é no caso a distancia entre o barco e o farol) = 500 x raiz de 3 raiz de 3 = 1,7 , então :
distancia igual á = 850 ! [
espero ter ajudado e espero também que esteja correto haha
albertrieben:
sua resposta esta certa
Respondido por
16
Bom dia
tg(30) = h/(x + 1000)
tg(60) = h/x
h = tg(30)*(x + 1000)
h = tg(60)*x
tg(30)x + 1000tg(30) = tg(60)*x
x*(tg(60) - tg(30)) = 1000tg(30)
x = 1000tg(30)((tg(60) - tg(30))
h = 1000tg(30)*tg(60)/((tg(60) - tg(30))
tg(30*tg(60) = 1
h = 1000/(tg(60) - tg(30)) = 1000/(√3 - √3/3)
h = 3000/(2√3) = 1500/√3 = 1500√3/3 = 500√3 m
tg(30) = h/(x + 1000)
tg(60) = h/x
h = tg(30)*(x + 1000)
h = tg(60)*x
tg(30)x + 1000tg(30) = tg(60)*x
x*(tg(60) - tg(30)) = 1000tg(30)
x = 1000tg(30)((tg(60) - tg(30))
h = 1000tg(30)*tg(60)/((tg(60) - tg(30))
tg(30*tg(60) = 1
h = 1000/(tg(60) - tg(30)) = 1000/(√3 - √3/3)
h = 3000/(2√3) = 1500/√3 = 1500√3/3 = 500√3 m
Anexos:
Perguntas interessantes
Geografia,
10 meses atrás
Matemática,
10 meses atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Sociologia,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás