Um automóvel custa, à vista, o valor de R$ 71.800,00 (PV) e pode ser financiado em 36(n) parcelas mensais iguais, sem entrada, com a taxa de 1,99% (i) ao mês. Determine o valor das prestações (PMT ?).
a.
PMT = R$ 2.757,52
b.
PMT = R$ 1.984,44
c.
PMT = R$ 894,18
d.
PMT = R$ 2.812,40
e.
PMT = R$ 2.999,93
Soluções para a tarefa
Respondido por
105
PMT = PV.[i(1+i)^n)]/[(1+i)^n -1]
PMT = 71800.[0,0199.(1 + 0,0199)^36]/[(1+ 0,0199)^36 -1]
PMT = 71800.[0,0199.(1,0199)^36]/[(1,0199)^36 -1]
PMT = 71800.[0,0199.(2,03270)]/[2,03270 - 1]
PMT = 71800.[0,04045]/[1,03270]
PMT = 71800.[0,03917]
PMT = 2812,40
Valor da prestação: R$ 2.812,40 - Alternativa D)
Espero ter ajudado
PMT = 71800.[0,0199.(1 + 0,0199)^36]/[(1+ 0,0199)^36 -1]
PMT = 71800.[0,0199.(1,0199)^36]/[(1,0199)^36 -1]
PMT = 71800.[0,0199.(2,03270)]/[2,03270 - 1]
PMT = 71800.[0,04045]/[1,03270]
PMT = 71800.[0,03917]
PMT = 2812,40
Valor da prestação: R$ 2.812,40 - Alternativa D)
Espero ter ajudado
paularubia:
Ajudou e Muito. ProfRafael. Muito Obrigada!!
Respondido por
18
O valor aproximado das parcelas é de d.PMT = R$ 2.812,40.
Para resolver essa questão, vamos aplicar a fórmula da matemática financeira, que nos permite calcular o valor das parcelas de um produto:
Onde:
AV = valor à vista do produto, valor presente
i = taxa de juros compostos.
n = número total de parcelas do financiamento.
parc = valor da parcela do financiamento.
Dados os valores:
AV = 71800,00
i = 1,99% a.m. = 0,0199
n = 36 parcelas
parc = R$ ??
Aplicando à fórmula, temos:
O valor aproximado das parcelas é de R$ 2812,40.
Mais sobre o assunto em:
brainly.com.br/tarefa/21310234
Anexos:
Perguntas interessantes