Matemática, perguntado por Cleitãoviana, 1 ano atrás

( UFSCar-SP ) Uma urna contém 3 bolas numeradas de 1 a 3 e outra urna com 5 bolas numeradas de 1 a 5. Ao retirar-se aleatoriamente uma bola de Cada uma, a probabilidade da soma dos pontos ser maior do que 4 é:

Soluções para a tarefa

Respondido por adolfoferoldi
2
Vamos lá

Urna 1: {1 , 2 , 3}
Urna 2: {1 , 2 , 3 , 4 , 5}

Agora vamos calcular a quantidade de eventos que podemos ter no máximo, que é sempre dado pelo produto de eventos 1 com o 2. No caso como temos 3 bolas na urna 1 e 5 na urna 2 totalizamos 15 possibilidades (3*5).

Agora precisamos definir nosso espaço amostral, que são as possibilidades que desejamos estudar, que são valores maiores que 4:

(>4): {(1+4) , (1+5) , (2+3) , (2+4) , (2+5) , (3+2) , (3+3) , (3+4) , (3+5)}

Se observarmos teremos 9 possibilidades.

Para sabermos agora a chance desse evento ocorrer basta dividir a possibilidades amostrais pela total:

P(>4)=9/15
P(>4)=3/5

Espero ter ajudado!
Perguntas interessantes