(UFRGS) A soma ㏒2/4 + ㏒4/5+........+ ㏒19/20 é igual a:
Lukyo:
o primeiro termo da soma não seria log 3/4?
Soluções para a tarefa
Respondido por
0
Olá!
Pensei no seguinte, veja:
![\\ \mathsf{\log \left ( \frac{2}{4} \right ) + \log \left ( \frac{4}{5} \right ) + ... + \log \left ( \frac{19}{20} \right ) =} \\\\\\ \mathsf{\log \left ( \frac{1}{2} \right ) + \log \left ( \frac{4}{5} \right ) + \log \left ( \frac{7}{8} \right ) + \log \left ( \frac{10}{11} \right ) + \log \left ( \frac{13}{14} \right ) + \log \left ( \frac{16}{17} \right ) + \log \left ( \frac{19}{20} \right ) =} \\\\\\ \mathsf{(\log 1 - \log 2) + (\log 4 - \log 5) + (\log 7 - \log 8) + (\log 10 - \log 11) + ... + (\log 19 - \log 20) =} \\\\ \mathsf{(\log 1 + \log 4 + \log 7 + \log 10 + ... + \log 19) - (\log 2 + \log 5 + \log 8 + \log 11 + ... + \log 20) =} \\\\ \mathsf{\log (1 \cdot 4 \cdot 7 \cdot 10 \cdot ... \cdot 19) - \log (2 \cdot 5 \cdot 8 \cdot 11 \cdot ... \cdot 20) =} \\ \mathsf{\log \left ( \frac{2}{4} \right ) + \log \left ( \frac{4}{5} \right ) + ... + \log \left ( \frac{19}{20} \right ) =} \\\\\\ \mathsf{\log \left ( \frac{1}{2} \right ) + \log \left ( \frac{4}{5} \right ) + \log \left ( \frac{7}{8} \right ) + \log \left ( \frac{10}{11} \right ) + \log \left ( \frac{13}{14} \right ) + \log \left ( \frac{16}{17} \right ) + \log \left ( \frac{19}{20} \right ) =} \\\\\\ \mathsf{(\log 1 - \log 2) + (\log 4 - \log 5) + (\log 7 - \log 8) + (\log 10 - \log 11) + ... + (\log 19 - \log 20) =} \\\\ \mathsf{(\log 1 + \log 4 + \log 7 + \log 10 + ... + \log 19) - (\log 2 + \log 5 + \log 8 + \log 11 + ... + \log 20) =} \\\\ \mathsf{\log (1 \cdot 4 \cdot 7 \cdot 10 \cdot ... \cdot 19) - \log (2 \cdot 5 \cdot 8 \cdot 11 \cdot ... \cdot 20) =}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7B%5Clog+%5Cleft+%28+%5Cfrac%7B2%7D%7B4%7D+%5Cright+%29+%2B+%5Clog+%5Cleft+%28+%5Cfrac%7B4%7D%7B5%7D+%5Cright+%29+%2B+...+%2B+%5Clog+%5Cleft+%28+%5Cfrac%7B19%7D%7B20%7D+%5Cright+%29+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Clog+%5Cleft+%28+%5Cfrac%7B1%7D%7B2%7D+%5Cright+%29+%2B+%5Clog+%5Cleft+%28+%5Cfrac%7B4%7D%7B5%7D+%5Cright+%29+%2B+%5Clog+%5Cleft+%28+%5Cfrac%7B7%7D%7B8%7D+%5Cright+%29+%2B+%5Clog+%5Cleft+%28+%5Cfrac%7B10%7D%7B11%7D+%5Cright+%29+%2B+%5Clog+%5Cleft+%28+%5Cfrac%7B13%7D%7B14%7D+%5Cright+%29+%2B+%5Clog+%5Cleft+%28+%5Cfrac%7B16%7D%7B17%7D+%5Cright+%29+%2B+%5Clog+%5Cleft+%28+%5Cfrac%7B19%7D%7B20%7D+%5Cright+%29+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%28%5Clog+1+-+%5Clog+2%29+%2B+%28%5Clog+4+-+%5Clog+5%29+%2B+%28%5Clog+7+-+%5Clog+8%29+%2B+%28%5Clog+10+-+%5Clog+11%29+%2B+...+%2B+%28%5Clog+19+-+%5Clog+20%29+%3D%7D+%5C%5C%5C%5C+%5Cmathsf%7B%28%5Clog+1+%2B+%5Clog+4+%2B+%5Clog+7+%2B+%5Clog+10+%2B+...+%2B+%5Clog+19%29+-+%28%5Clog+2+%2B+%5Clog+5+%2B+%5Clog+8+%2B+%5Clog+11+%2B+...+%2B+%5Clog+20%29+%3D%7D+%5C%5C%5C%5C+%5Cmathsf%7B%5Clog+%281+%5Ccdot+4+%5Ccdot+7+%5Ccdot+10+%5Ccdot+...+%5Ccdot+19%29+-+%5Clog+%282+%5Ccdot+5+%5Ccdot+8+%5Ccdot+11+%5Ccdot+...+%5Ccdot+20%29+%3D%7D)
![\\ \mathsf{\log (1 \cdot 4 \cdot 7 \cdot 10 \cdot ... \cdot 19) - \log (2 \cdot 5 \cdot 8 \cdot 11 \cdot ... \cdot 20) =} \\\\ \mathsf{\log \left ( \frac{1 \cdot 4 \cdot 7 \cdot 10 \cdot ... \cdot 19}{2 \cdot 5 \cdot 8 \cdot 11 \cdot ... \cdot 20} \right ) =} \\\\\\ \mathsf{\log \left ( \frac{1 \cdot 4 \cdot 7 \cdot 10 \cdot ... \cdot 19}{2 \cdot 5 \cdot 8 \cdot 11 \cdot ... \cdot 20} \right ) =} \\\\\\ \mathsf{\log \left ( \frac{13 \cdot 19}{5 \cdot 11 \cdot 17} \right ) =} \\\\ \boxed{\mathsf{\log 247 - \log 935}} \\ \mathsf{\log (1 \cdot 4 \cdot 7 \cdot 10 \cdot ... \cdot 19) - \log (2 \cdot 5 \cdot 8 \cdot 11 \cdot ... \cdot 20) =} \\\\ \mathsf{\log \left ( \frac{1 \cdot 4 \cdot 7 \cdot 10 \cdot ... \cdot 19}{2 \cdot 5 \cdot 8 \cdot 11 \cdot ... \cdot 20} \right ) =} \\\\\\ \mathsf{\log \left ( \frac{1 \cdot 4 \cdot 7 \cdot 10 \cdot ... \cdot 19}{2 \cdot 5 \cdot 8 \cdot 11 \cdot ... \cdot 20} \right ) =} \\\\\\ \mathsf{\log \left ( \frac{13 \cdot 19}{5 \cdot 11 \cdot 17} \right ) =} \\\\ \boxed{\mathsf{\log 247 - \log 935}}](https://tex.z-dn.net/?f=%5C%5C+%5Cmathsf%7B%5Clog+%281+%5Ccdot+4+%5Ccdot+7+%5Ccdot+10+%5Ccdot+...+%5Ccdot+19%29+-+%5Clog+%282+%5Ccdot+5+%5Ccdot+8+%5Ccdot+11+%5Ccdot+...+%5Ccdot+20%29+%3D%7D+%5C%5C%5C%5C+%5Cmathsf%7B%5Clog+%5Cleft+%28+%5Cfrac%7B1+%5Ccdot+4+%5Ccdot+7+%5Ccdot+10+%5Ccdot+...+%5Ccdot+19%7D%7B2+%5Ccdot+5+%5Ccdot+8+%5Ccdot+11+%5Ccdot+...+%5Ccdot+20%7D+%5Cright+%29+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Clog+%5Cleft+%28+%5Cfrac%7B1+%5Ccdot+4+%5Ccdot+7+%5Ccdot+10+%5Ccdot+...+%5Ccdot+19%7D%7B2+%5Ccdot+5+%5Ccdot+8+%5Ccdot+11+%5Ccdot+...+%5Ccdot+20%7D+%5Cright+%29+%3D%7D+%5C%5C%5C%5C%5C%5C+%5Cmathsf%7B%5Clog+%5Cleft+%28+%5Cfrac%7B13+%5Ccdot+19%7D%7B5+%5Ccdot+11+%5Ccdot+17%7D+%5Cright+%29+%3D%7D+%5C%5C%5C%5C+%5Cboxed%7B%5Cmathsf%7B%5Clog+247+-+%5Clog+935%7D%7D)
Espero ter ajudado!
Boa questão!!
Pensei no seguinte, veja:
Espero ter ajudado!
Boa questão!!
Perguntas interessantes