Matemática, perguntado por charlesfagundeouw645, 1 ano atrás

(Ufpe) Em uma festa de aniversário cada
convidado deveria receber o mesmo número de
chocolates. Três convidados mais apressados se
adiantaram e o primeiro comeu 2, o segundo 3 e o
terceiro 4 chocolates além dos que lhe eram devidos,
resultando no consumo de metade dos chocolates da
festa. Os demais chocolates foram divididos
igualmente entre os demais convidados e cada um
recebeu um a menos do que lhe era devido. Quantos
foram os chocolates distribuídos na festa?

Soluções para a tarefa

Respondido por Usuário anônimo
3
(x+2)+(x+3)+(x+4) =n*x/2
3x+9=n*x/2
6x+18=n*x
n=(6x+18)/x

(n-3)*(x-1)=nx/2

[(6x+18)/x-3]*(x-1)=x/2  * (6x+18)/x

[3+18/x]*(x-1)=3x+9

3x+18-3-18/x=3x+9

15-18/x=9

-18/x=-6

x=-18/(-6)=3

n=(6x+18)/x=(6*3+18)/3=36/3=12 chocolates

charlesfagundeouw645: Obrigado, mas eu não entendi esse final da equação, e a resposta é 12.
charlesfagundeouw645: *NÃO é 12, a resposta é 36
Usuário anônimo: n é o número de convidados, x é o número de bombons que cada um deveria receber inicialmente , n*x=3*12 =36 é o número de bombons distribuídos na festa...
charlesfagundeouw645: Valeu, depois que eu fui entender isso, mas não tinha como apagar o comentário hehehehe
Perguntas interessantes