(UFPE) A figura seguinte representa um rio cujas margens são retas paralelas, qual é o número inteiro mais próximo da largura do rio, quando está é medida em metros?
Soluções para a tarefa
O número inteiro mais próximo da largura do rio é 26 metros.
Na figura, os triângulos são semelhantes, pois seus ângulos têm a mesma medida.
Sendo assim, seus lados correspondentes são proporcionais.
Então:
L = 32
8 10
Multiplicando cruzado, fica:
10.L = 32.8
10L = 256
L = 256
10
L = 25,6
25,6 está mais próximo de 26 do que de 25.
Então, a largura do rio é de 26 m.
A largura aproximada do rio é de 25,6 m.
Para resolvermos essa questão, devemos aprender o que é semelhança entre triângulos.
O que é semelhança entre triângulos?
Quando dois triângulos são formados pelos mesmos ângulos, os segmentos de reta entre ângulos correspondentes são equivalentes. Assim, a razão entre as medidas desses segmentos é sempre a mesma.
Com isso, temos que ambos os triângulos representados na figura são semelhantes. Assim, a razão entre medidas entre os mesmos ângulos deve ser sempre a mesma.
Analisando as medidas, temos que as razões são:
- 32/10 = largura/8;
- Multiplicando ambos os lados da equação por 8, obtemos que largura = 8*32/10 = 25,6.
Portanto, a largura aproximada do rio é de 25,6 m.
Para aprender mais sobre semelhança entre triângulos, acesse:
brainly.com.br/tarefa/45558496
#SPJ3