Matemática, perguntado por nat73, 1 ano atrás

(ufla-mg) calcule os valores de a b e c
x+5 /(x+2)(x-1)^2=a/x+2+b/x-1+c/(x-1)^2

Soluções para a tarefa

Respondido por Lukyo
15
Caso tiver problemas para visualizar a resposta pelo aplicativo, experimente abrir pelo navegador: https://brainly.com.br/tarefa/8061925

______________


Calcular os valores das constantes a, b, c:

\mathsf{\dfrac{x+5}{(x+2)(x-1)^2}=\dfrac{a}{x+2}+\dfrac{b}{x-1}+\dfrac{c}{(x-1)^2}}


Reduzindo as frações do lado direito ao mesmo denominador, ficamos com

\mathsf{\dfrac{x+5}{(x+2)(x-1)^2}=\dfrac{a(x-1)^2}{(x+2)(x-1)^2}+\dfrac{b(x+2)(x-1)}{(x+2)(x-1)^2}+\dfrac{c(x+2)}{(x+2)(x-1)^2}}\\\\\\ \mathsf{\dfrac{x+5}{(x+2)(x-1)^2}=\dfrac{a(x-1)^2+b(x+2)(x-1)+c(x+2)}{(x+2)(x-1)^2}}\\\\\\ \mathsf{\dfrac{x+5}{(x+2)(x-1)^2}=\dfrac{a(x^2-2x+1)+b(x^2-x+2x-2)+c(x+2)}{(x+2)(x-1)^2}}

\mathsf{\dfrac{x+5}{(x+2)(x-1)^2}=\dfrac{a(x^2-2x+1)+b(x^2+x-2)+c(x+2)}{(x+2)(x-1)^2}}\\\\\\ \mathsf{\dfrac{x+5}{(x+2)(x-1)^2}=\dfrac{ax^2-2ax+a+bx^2+bx-2b+cx+2c}{(x+2)(x-1)^2}}\\\\\\ \mathsf{\dfrac{x+5}{(x+2)(x-1)^2}=\dfrac{ax^2+bx^2-2ax+bx+cx+a-2b+2c}{(x+2)(x-1)^2}}\\\\\\ \mathsf{\dfrac{x+5}{(x+2)(x-1)^2}=\dfrac{(a+b)x^2+(-2a+b+c)x+a-2b+2c}{(x+2)(x-1)^2}}


Igualando os numeradores

\mathsf{x+5=(a+b)x^2+(-2a+b+c)x+a-2b+2c}\\\\ \mathsf{0x^2+1x+5=(a+b)x^2+(-2a+b+c)x+a-2b+2c}


Por identidade polinomial, tiramos que

\mathsf{x+5=(a+b)x^2+(-2a+b+c)x+a-2b+2c}\\\\ \mathsf{0x^2+1x+5=(a+b)x^2+(-2a+b+c)x+a-2b+2c}\\\\\\ \left\{\! \begin{array}{cccc} \mathsf{a+b}&=&\mathsf{0}&\quad\mathsf{(i)}\\ \mathsf{-2a+b+c}&=&\mathsf{1}&\quad\mathsf{(ii)}\\ \mathsf{a-2b+2c}&=&\mathsf{5}&\quad\mathsf{(iii)} \end{array} \right.


Isolando \mathsf{b} na equação (i) e substituindo nas outras duas,

\mathsf{b=-a}\\\\ \left\{\! \begin{array}{ccc} \mathsf{-2a+(-a)+c}&=&\mathsf{1}\\ \mathsf{a-2(-a)+2c}&=&\mathsf{5} \end{array} \right.\\\\\\ \left\{\! \begin{array}{ccc} \mathsf{-2a-a+c}&=&\mathsf{1}\\ \mathsf{a+2a+2c}&=&\mathsf{5} \end{array} \right.\\\\\\ \left\{\! \begin{array}{cccc} \mathsf{-3a+c}&=&\mathsf{1}&\quad\mathsf{(iv)}\\ \mathsf{3a+2c}&=&\mathsf{5}&\quad\mathsf{(v)} \end{array} \right.


Somando as equações (iv) e (v) membro a membro, temos

\mathsf{-\diagup\!\!\!\!\! 3a+c+\diagup\!\!\!\!\! 3a+2c=1+5}\\\\ \mathsf{c+2c=6}\\\\ \mathsf{3c=6}\\\\ \mathsf{c=\dfrac{6}{3}}\\\\\\ \mathsf{c=2}\qquad\quad\checkmark


Substituindo o valor de c na equaçao (iv), obtemos

\mathsf{-3a+2=1}\\\\ \mathsf{2-1=3a}\\\\ \mathsf{1=3a}\\\\ \mathsf{a=\dfrac{\,1\,}{3}}\qquad\quad\checkmark


E finalmente

\mathsf{b=-a}\\\\ \mathsf{b=-\,\dfrac{\,1\,}{3}}\qquad\quad\checkmark


Os valores das constantes são

\mathsf{a=\dfrac{\,1\,}{3},~~b=-\,\dfrac{\,1\,}{3}~~e~~c=2}\qquad\quad\checkmark


Bons estudos! :-)


Lukyo: Oops.. transcrevi as constantes a e c trocadas ao final. O certo é como está no desenvolvimento: a = 1/3, b = – 1/3 e c = 2. Vou ajustar essa parte. :-)
Lukyo: Pronto. =)
Perguntas interessantes