Física, perguntado por walissonsd165, 4 meses atrás

(UEL-PR) Considere o circuito representado no esquema abaixo, onde cada resistência vale 10Ω.
A resistência equivalente entre os terminais X e Y , em ohms, é igual a:
a) 10
b) 15
c) 30
d) 40
e) 90

Anexos:

Soluções para a tarefa

Respondido por PhillDays
8

⠀⠀⠀☞ A resistência equivalente é de 15 [Ω] (opção b). ✅

⠀⠀⠀⭐⠀Para realizar este exercício vamos encontrar a resistência equivalente das resistências em série e paralelo.⠀⭐⠀

⠀⠀⠀➡️⠀Oi, Walisson ✌. Vamos inicialmente associar os resistores que estão em série (as imagens a seguir não são visualizáveis pelo app Brainly. Experimente compartilhar > copiar e acessar a resposta pelo navegador/ browser):

                         \setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\put(0,0){\line(1,0){8}}\put(1,-2){\line(1,0){6}}\put(1,-4){\line(1,0){6}}\put(1,0){\line(0,-1){4}}\put(7,0){\line(0,-1){4}}\put(2,-0.23){\Huge$\sf\circ$}\put(2,0.3){$\sf R$}\put(3.75,-0.23){\Huge$\sf\circ$}\put(3.75,0.3){$\sf R$}\put(5.5,-0.23){\Huge$\sf\circ$}\put(5.5,0.3){$\sf R$}\put(3,-2.23){\Huge$\sf\circ$}\put(3,-1.7){$\sf R$}\put(4.5,-2.23){\Huge$\sf\circ$}\put(4.5,-1.7){$\sf R$}\put(3,-4.23){\Huge$\sf\circ$}\put(3,-3.7){$\sf R$}\put(4.5,-4.23){\Huge$\sf\circ$}\put(4.5,-3.7){$\sf R$}\put(0.78,-1.23){\Huge$\sf\circ$}\put(0.78,-0.8){$\sf R$}\put(6.78,-1.23){\Huge$\sf\circ$}\put(6.78,-0.8){$\sf R$}\end{picture}

                         \setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\put(0,0){\line(1,0){8}}\put(1,-2){\line(1,0){6}}\put(1,-4){\line(1,0){6}}\put(1,0){\line(0,-1){4}}\put(7,0){\line(0,-1){4}}\put(3.75,-0.23){\Huge$\sf\circ$}\put(3.75,0.3){$\sf 3R$}\put(3.75,-2.23){\Huge$\sf\circ$}\put(3.75,-1.7){$\sf 2R$}\put(3.75,-4.23){\Huge$\sf\circ$}\put(3.75,-3.7){$\sf 2R$}\put(0.78,-1.23){\Huge$\sf\circ$}\put(0.78,-0.8){$\sf R$}\put(6.78,-1.23){\Huge$\sf\circ$}\put(6.78,-0.8){$\sf R$}\end{picture}

⠀⠀⠀➡️⠀Vamos agora associar as duas resistências em paralelo da segunda e terceira linha:

\LARGE\blue{\text{$\sf \dfrac{1}{R_{eq}} = \dfrac{1}{2R} + \dfrac{1}{2R}$}}

\LARGE\blue{\text{$\sf \dfrac{1}{R_{eq}} = \dfrac{\backslash\!\!\!{2}}{\backslash\!\!\!{2}R}$}}

\LARGE\blue{\text{$\sf \dfrac{1}{R_{eq}} = \dfrac{1}{R}$}}

\LARGE\blue{\text{$\sf R_{eq} = R$}}

                         \setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\put(0,0){\line(1,0){8}}\put(1,-2){\line(1,0){6}}\put(1,0){\line(0,-1){2}}\put(7,0){\line(0,-1){2}}\put(3.75,-0.23){\Huge$\sf\circ$}}\put(3.75,0.3){$\sf 3R$}\put(2,-2.23){\Huge$\sf\circ$}\put(2,-1.7){$\sf R$}\put(3.75,-2.23){\Huge$\sf\circ$}\put(3.75,-1.7){$\sf R$}\put(5.5,-2.23){\Huge$\sf\circ$}\put(5.5,-1.7){$\sf R$}\end{picture}

⠀⠀⠀➡️⠀Novamente os que estão em série:

                         \setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\put(0,0){\line(1,0){8}}\put(1,-2){\line(1,0){6}}\put(1,0){\line(0,-1){2}}\put(7,0){\line(0,-1){2}}\put(3.75,-0.23){\Huge$\sf\circ$}\put(3.75,0.3){$\sf 3R$}\put(3.75,-2.23){\Huge$\sf\circ$}}\put(3.75,-1.7){$\sf 3R$}\end{picture}

⠀⠀⠀➡️⠀E por fim os dois que estão em paralelo:

\LARGE\blue{\text{$\sf \dfrac{1}{R_{eq}} = \dfrac{1}{3R} + \dfrac{1}{3R}$}}

\LARGE\blue{\text{$\sf \dfrac{1}{R_{eq}} = \dfrac{2}{3R}$}}

\LARGE\blue{\text{$\sf R_{eq} = \dfrac{3R}{2}$}}

⠀  

⠀⠀⠀⭐ Sabendo que R = 10 [Ω] então a resistência equivalente vale 3·10/2 = 30/2 = 15 [Ω], o que nos leva à opção b). ✌

                                            \qquad\qquad\Huge\green{\boxed{\rm~~~\red{b)}~\blue{ 15 }~~~}}

                             \bf\large\red{\underline{\quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}

⠀⠀⠀☀️ L͎̙͖͉̥̳͖̭̟͊̀̏͒͑̓͊͗̋̈́ͅeia mais sobre associação de resistores:

                                     https://brainly.com.br/tarefa/37983721 ✈  

                                     \huge\blue{\text{\bf\quad Bons~estudos.}}

                                          \quad\qquad(\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios})

                             \bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }\LaTeX}

                                \sf(\purple{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly} ☘☀❄☃☂☻)

                                                          \Huge\green{\text{$\underline{\red{\mathbb{S}}\blue{\mathfrak{oli}}~}~\underline{\red{\mathbb{D}}\blue{\mathfrak{eo}}~}~\underline{\red{\mathbb{G}}\blue{\mathfrak{loria}}~}$}}

Anexos:
Perguntas interessantes