Udesc a expressão cotg (2x) + cossec (2x) pode ser escrita como:
Anexos:
Soluções para a tarefa
Respondido por
25
Sabendo que [ cos (2x) = 2cos²x -1 ] e [ sen (2x) = 2sen x . cos x
OK
cotg 2x + cossec 2x = ( cos 2x / sen 2x ) + ( 1 / sen 2x )
= ( 1 + cos 2x ) / ( sen 2x )
= ( 1 + 2cos² x - 1 ) / ( 2sen x . cos x )
= ( cos x ) / ( sen x )
= ( cotg x )
Espero ter ajudado.
OK
cotg 2x + cossec 2x = ( cos 2x / sen 2x ) + ( 1 / sen 2x )
= ( 1 + cos 2x ) / ( sen 2x )
= ( 1 + 2cos² x - 1 ) / ( 2sen x . cos x )
= ( cos x ) / ( sen x )
= ( cotg x )
Espero ter ajudado.
dudasilvv:
mas por que cos (2x) = 2cos²x -1 se o cos(2x) = cos²x - sen²x, pela fórmula
Respondido por
10
Resposta:
Explicação passo-a-passo:
A respondo Lukas está correta clau02, de acordo com a relação fundamental da trigonometria, sen²x+cos²x=1
Então ao substituir o sen²x em:
Cos2x= cos²x-sen²x por sen²x=1-cos²x(relação fundamental, apenas passei o cos²x substraindo) fica:
Cos2x= cos²x-(1-cos²x)
Cos2x= 2cos²x-1.
Bons estudos!
Perguntas interessantes
Matemática,
9 meses atrás
Geografia,
9 meses atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Sociologia,
1 ano atrás