Matemática, perguntado por gvcfdes, 6 meses atrás

Trigometria na circunferencia
expresse em graus:

Anexos:

Soluções para a tarefa

Respondido por duda4938
1

Resposta:

a)

\pi  \frac{\pi}{3}  \div 5 \csc( \beta )

espero ter ajudado♡


gvcfdes: vlw
Respondido por auditsys
1

Resposta:

\textsf{Leia abaixo}

Explicação passo-a-passo:

\mathsf{a)\: \dfrac{\pi }{3}\:rad  \iff \dfrac{\pi }{180} = \dfrac{\pi }{3x} \iff 3x = 180 \iff x = 60\textdegree}

\mathsf{b)\: \dfrac{\pi }{2}\:rad  \iff \dfrac{\pi }{180} = \dfrac{\pi }{2x} \iff 2x = 180 \iff x = 90\textdegree}

\mathsf{c)\: \dfrac{\pi }{4}\:rad  \iff \dfrac{\pi }{180} = \dfrac{\pi }{4x} \iff 4x = 180 \iff x = 45\textdegree}

\mathsf{d)\: \dfrac{\pi }{5}\:rad  \iff \dfrac{\pi }{180} = \dfrac{\pi }{5x} \iff 5x = 180 \iff x = 36\textdegree}

\mathsf{e)\: 0,5\pi \:rad  \iff \dfrac{\pi }{180} = \dfrac{\pi }{2x} \iff 2x = 180 \iff x = 90\textdegree}

\mathsf{f)\: \dfrac{3\pi}{4} \:rad  \iff \dfrac{\pi }{180} = \dfrac{3\pi }{4x} \iff 4x = 540 \iff x = 135\textdegree}

\mathsf{g)\: \dfrac{2\pi}{9} \:rad  \iff \dfrac{\pi }{180} = \dfrac{2\pi }{9x} \iff 9x = 360 \iff x = 40\textdegree}

\mathsf{h)\: \dfrac{11\pi}{6} \:rad  \iff \dfrac{\pi }{180} = \dfrac{11\pi }{6x} \iff 6x = 1.980 \iff x = 330\textdegree}

\mathsf{i)\: 3\:rad  \iff \dfrac{\pi }{180} = \dfrac{3}{x} \iff x = \dfrac{540}{\pi } \iff x = 171,89\textdegree}

Perguntas interessantes