Física, perguntado por luisamn12, 10 meses atrás

Três satélites – I, II e III – movem-se em órbitas circulares ao redor da Terra. A massa do satélite I é m, a massa do satélite II é 2m e a massa do satélite III é 3m. O satélite III está em uma órbita de raio r e os satélites I e II estão em uma mesma órbita de raio 2r. Sendo TI, TII e TIII os períodos dos satélites em torno da Terra, compare e justifique período dos três satélites.

Soluções para a tarefa

Respondido por josalberto314
16

Resposta:

T1 = T2 = 2√2 T3 (T1 = T2 > T3)

Explicação:

Usando a Terceira Lei de Kepler:

T²/R³ = Constante

(T = período R = raio da órbita)

Escrevendo a expressão para os satélites 1 e 3, podemos igualá-las, pois o valor da fração é constante.

T1²/(2R)³ = T3²/R³

T1²/8R³ = T3²/R²

T1²/8 = T3²

T1² = 8T3²

T1 = 2√2 T3

Fazendo o mesmo com os satélites 1 e 2, é fácil ver que T1 = T2.

Obs: a massas dos satélites não interferem no resultado!

Perguntas interessantes