Física, perguntado por aaallison1986, 1 ano atrás

Três rochas perfeitamente esféricas A, B e C descem a rampa indicada na Figura, o bloco B pesa a metade do bloco A e o bloco C pesa um terço do bloco A, o bloco A parte do repouso. Desprezando o atrito e considerando todos os choque como inelásticos calcule a velocidade final, em m/s, do conjunto na base da rampa. Considere g = 9,81 m/s².

Anexos:

Soluções para a tarefa

Respondido por faguiarsantos
0

A velocidade final equivale aproximadamente a 11,38 m/s.

A energia potencial gravitacional da bola A será totalmente transformada em energia cinética na primeira plataforma, já que as forças dissipativas foram desconsideradas.

mgh = mV²/2

gh = V²/2

9,81. 2 = V²/2

V² = 39,24

V ≅ 626 m/s

No choque inelástico, a quantidade de movimento é conservada e os dois corpos seguem unidos com a mesma velocidade após o choque.

m. 6,26 = (m + 0,5m)Vf

6,26m = 1,5mVf

Vf ≅ 4,18 m/s

A energia potencial gravitacional das duas bolas somada a energia cinética será transformada em energia cinética na segunda plataforma.

mgh + mVf²/2 = mV²/2

9,81. 3 + 4,18²/2 = V²/2

29,43 + 8,74 = V²/2

V ≅ 8,74 m/s

Novamente temos outro choque inelástico -

1,5m. 8,74 = (m + 0,5m + 1/3m) Vf

Vf = 7,15 m/s

Mais uma vez energia potencial somada a energia cinética será transformada em energia cinética no solo.

mgh + mV²/2 = mV²/2

9,81. 4 + 7,15²/2 = V²/2

39,24 + 25,56 = V²/2

V ≅ 11,38 m/s

Perguntas interessantes