Matemática, perguntado por JacksonBrain, 4 meses atrás

Transforme o radical duplo abaixo em uma soma de radicais simples.

 \sqrt{ \frac{30(3 + \sqrt{5)}  }{11} }

Soluções para a tarefa

Respondido por auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{\sqrt{A \pm \sqrt{B}} = \sqrt{\dfrac{A + C}{2}} \pm \sqrt{\dfrac{A - C}{2}}}

\mathsf{\sqrt{\dfrac{30(3 + \sqrt{5})}{11}}}

\mathsf{\sqrt{\dfrac{90 + 30\sqrt{5}}{11}}}

\mathsf{\sqrt{\dfrac{90}{11} + \dfrac{30\sqrt{5}}{11}}}

\mathsf{\sqrt{\dfrac{90}{11} + \sqrt{\dfrac{30^2.5}{11^2}}}}

\mathsf{\sqrt{\dfrac{90}{11} + \sqrt{\dfrac{900.5}{121}}}}

\mathsf{\sqrt{\dfrac{90}{11} + \sqrt{\dfrac{4.500}{121}}}}

\mathsf{A = \dfrac{90}{11}}

\mathsf{B = \dfrac{4.500}{121}}

\mathsf{C = \sqrt{A^2 - B}}

\mathsf{C = \sqrt{\dfrac{8.100}{121} - \dfrac{4.500}{121}}}

\mathsf{C = \sqrt{\dfrac{3.600}{121}}}

\mathsf{C = \dfrac{60}{11}}

\mathsf{\sqrt{\dfrac{30(3 + \sqrt{5})}{11}} = \sqrt{\dfrac{90/11 + 60/11}{2}} + \sqrt{\dfrac{90/11 - 60/11}{2}}}

\mathsf{\sqrt{\dfrac{30(3 + \sqrt{5})}{11}} = \sqrt{\dfrac{150/11}{2}} + \sqrt{\dfrac{30/11}{2}}}

\mathsf{\sqrt{\dfrac{30(3 + \sqrt{5})}{11}} = \sqrt{\dfrac{150}{22}} + \sqrt{\dfrac{30}{22}}}

\boxed{\boxed{\mathsf{\sqrt{\dfrac{30(3 + \sqrt{5})}{11}} = \sqrt{\dfrac{75}{11}} + \sqrt{\dfrac{15}{11}}}}}


JacksonBrain: Muito obrigado.
Perguntas interessantes