Matemática, perguntado por pedrohenriqueholzmei, 7 meses atrás

transforme em um unico radical

Anexos:

Soluções para a tarefa

Respondido por FioxPedo
4

a) \sqrt{3} × \sqrt{5}

\sqrt{3.5}

\sqrt{15}

b) \sqrt[3]{7} × \sqrt[3]{11}

\sqrt[3]{7.11}

\sqrt[3]{77}

c) \sqrt{2} × \sqrt{5} × \sqrt{7}

\sqrt{2.5.7}

\sqrt{70}

d) \sqrt[12]{5} × \sqrt[12]{10}

\sqrt[12]{5.10}

\sqrt[12]{50}

e) \frac{\sqrt{12}*\sqrt{15}  }{\sqrt{8} }

\frac{\sqrt{3} *\sqrt{15} }{\sqrt{2} }

\frac{\sqrt{45} }{\sqrt{2} }

\frac{3\sqrt{5} }{\sqrt{2} }

\frac{3\sqrt{5} }{\sqrt{2} } *\frac{\sqrt{2} }{\sqrt{2} }

\frac{3\sqrt{10} }{2}

f) \frac{\sqrt[3]{9}*\sqrt[3]{10}  }{\sqrt[3]{4} \sqrt[3]{3} }

\frac{\sqrt[3]{3} *\sqrt[3]{2} }{\sqrt[3]{4} *\sqrt[3]{3} }

\frac{1}{\sqrt[3]{2} }

\frac{1\sqrt[3]{2^{2} } }{\sqrt[3]{2}\sqrt[3]{2^{2} }   } \\

\frac{\sqrt[3]{4} }{\sqrt[3]{2^{3} } }

\frac{\sqrt[3]{4} }{2}

g) \frac{\sqrt[6]{4}*\sqrt{\sqrt[3]{10} }  }{\sqrt[6]{120} }

\frac{\sqrt{\sqrt[3]{10} } }{\sqrt[6]{30} }

\frac{\sqrt[6]{10} }{\sqrt[6]{30} }

\frac{1}{\sqrt[6]{3} }

\frac{1\sqrt[6]{3^{5} } }{\sqrt[6]{3} \sqrt[6]{3^{5} } }

\frac{\sqrt[6]{243} }{\sqrt[6]{3^{6} } }

\frac{\sqrt[6]{243} }{3}

Perguntas interessantes