trabalho de equações do 2º grau
b) x²-4x+3= 0
c) x²-15x+50=0
Soluções para a tarefa
Respondido por
1
Dada a equação ax² + bx + c, para achar suas raízes temos:
![x1 = \frac{-b + \sqrt{b^2 -4.a.c} }{2.a} \\\\
x2 = \frac{-b - \sqrt{b^2 -4.a.c} }{2.a} x1 = \frac{-b + \sqrt{b^2 -4.a.c} }{2.a} \\\\
x2 = \frac{-b - \sqrt{b^2 -4.a.c} }{2.a}](https://tex.z-dn.net/?f=x1+%3D++%5Cfrac%7B-b+%2B+%5Csqrt%7Bb%5E2+-4.a.c%7D+%7D%7B2.a%7D++%5C%5C%5C%5C%0Ax2+%3D++%5Cfrac%7B-b+-+%5Csqrt%7Bb%5E2+-4.a.c%7D+%7D%7B2.a%7D)
a) a = 1, b = -4 , c = 3 . Utilizando a fórmula:
![x1 = \frac{4 + \sqrt{16 - 4.1.3} }{2.1} = \frac{ 4 + \sqrt{16 - 12} }{2} = \frac{4+2}{2} = 3 \\\\
x2 = \frac{4 - \sqrt{16 - 4.1.3} }{2.1} = \frac{ 4 - \sqrt{16 - 12} }{2} = \frac{4-2}{2} = 1 x1 = \frac{4 + \sqrt{16 - 4.1.3} }{2.1} = \frac{ 4 + \sqrt{16 - 12} }{2} = \frac{4+2}{2} = 3 \\\\
x2 = \frac{4 - \sqrt{16 - 4.1.3} }{2.1} = \frac{ 4 - \sqrt{16 - 12} }{2} = \frac{4-2}{2} = 1](https://tex.z-dn.net/?f=x1+%3D++%5Cfrac%7B4+%2B++%5Csqrt%7B16+-+4.1.3%7D+%7D%7B2.1%7D++%3D++%5Cfrac%7B+4+%2B++%5Csqrt%7B16+-++12%7D+%7D%7B2%7D+%3D++%5Cfrac%7B4%2B2%7D%7B2%7D+%3D+3+%5C%5C%5C%5C%0Ax2+%3D+++%5Cfrac%7B4+-++%5Csqrt%7B16+-+4.1.3%7D+%7D%7B2.1%7D+%3D++%5Cfrac%7B+4+-++%5Csqrt%7B16+-++12%7D+%7D%7B2%7D++%3D+%5Cfrac%7B4-2%7D%7B2%7D+%3D+1+)
S = {1,3}
b) a = 1, b = -15 e c = 50
![x1 = \frac{15 + \sqrt{225 - 4.1.50} }{2.1} = \frac{ 15 + \sqrt{225 - 200} }{2} = \frac{15+5}{2} = 10 \\\\ x2 = \frac{15 - \sqrt{225 - 4.1.50} }{2.1} = \frac{ 15 - \sqrt{225 - 200} }{2} = \frac{15-5}{2} = 5 x1 = \frac{15 + \sqrt{225 - 4.1.50} }{2.1} = \frac{ 15 + \sqrt{225 - 200} }{2} = \frac{15+5}{2} = 10 \\\\ x2 = \frac{15 - \sqrt{225 - 4.1.50} }{2.1} = \frac{ 15 - \sqrt{225 - 200} }{2} = \frac{15-5}{2} = 5](https://tex.z-dn.net/?f=x1+%3D+%5Cfrac%7B15+%2B+%5Csqrt%7B225+-+4.1.50%7D+%7D%7B2.1%7D+%3D+%5Cfrac%7B+15+%2B+%5Csqrt%7B225+-+200%7D+%7D%7B2%7D+%3D+%5Cfrac%7B15%2B5%7D%7B2%7D+%3D+10+%5C%5C%5C%5C+x2+%3D+%5Cfrac%7B15+-+%5Csqrt%7B225+-+4.1.50%7D+%7D%7B2.1%7D+%3D+%5Cfrac%7B+15+-+%5Csqrt%7B225+-+200%7D+%7D%7B2%7D+%3D+%5Cfrac%7B15-5%7D%7B2%7D+%3D+5)
S = {5,10}
;)
a) a = 1, b = -4 , c = 3 . Utilizando a fórmula:
S = {1,3}
b) a = 1, b = -15 e c = 50
S = {5,10}
;)
Perguntas interessantes