TÔ DE RECUPERAÇÃO LASCADO ALGUÉM ME AJUDA POR FAVOR
4) Um objeto percorre 8 metros ao ser solto sobre um plano inclinado que forma um ângulo de 30º com a horizontal do solo. Determine a altura, em relação ao solo, da qual o objeto foi solto.
Soluções para a tarefa
Resposta:
O plano inclinado é a hipotenusa, portanto:
sen 30° = cateto oposto/ hipotenusa
sen 30° = 1/2
1/2= co/8
co= 4
Logo a altura é igual a 4 metros.
Explicação passo-a-passo:
naTelha
Ambicioso
54 respostas
4.4 mil pessoas receberam ajuda
Primeiro, temos que ter em mente que o solo, o plano inclinado e a altura em relação ao solo irão formar um ângulo retângulo, sendo assim, temos q identificar a função de cada lado desse triângulo. O plano inclinado, que terá lado igual a 8m, será a hipotenusa; a altura será o cateto oposto ao ângulo (60º com a horizontal); representaremos o cateto oposto como X.
Tendo organizado essas informações, utilizaremos o seno para a realização desse cálculo, pois Seno= Cateto oposto/ Hipotenusa, que são as informações que o problema nos ofereceu. O cálculo seria o seguinte ->
Sen α = C.O./ Hip
Sen 60º = X/8
√3/2 = x/8
8√3/2 = x
x = 4√3 m <- RESPOSTA
Obs.: Se a resposta pedir um valor sem raiz, podemos aproximar √3 para 1,732, então basta efetuar o produto: