Matemática, perguntado por yaketeresa, 5 meses atrás

the sum of first three terms in a GP is 38 their product is 1728 find the values of the terms step by step solutions​

Soluções para a tarefa

Respondido por chuvanocampo
0

PG: (a_1, a_2, a_3, a_4, ..., a_n)

common ratio:  q=$\displaystyle(\frac{a_2}{a_1}=\frac{a_3}{a_2} =\frac{a_4}{a_3} , ...)

a_1 = a\\a_2 = aq\\a_3 = aq^2

----------------------------------------------------------

a_1 * a_2 * a_3 = 1728

a * aq * aq^2 = 1728

a^3q^3 = 2^6*3^3=12^3

aq=12

q=$\displaystyle\frac{12}{a}

----------------------------------------------------------

a_1 + a_2 + a_3 = 38

a + aq + aq^2 = 38

a + a$\displaystyle\frac{12}{a} + a($\displaystyle\frac{12}{a})^2 = 38

a + 12 + $\displaystyle\frac{12^2}{a} = 38

a + $\displaystyle\frac{12^2}{a} = 26

a^2 + 12^2 = 26a

a^2 -26a =-12^2

(a-13)^2-13^2=-144

(a-13)^2=-144+169

(a-13)^2=25

a-13=\pm5

a=\pm5+13

a'=+5+13=18

a"=-5+13=8

----------------------------------------------------------

q=$\displaystyle\frac{12}{a}

q'=$\displaystyle\frac{12}{a'}=\frac{12}{18}=\frac{2}{3}

q"=$\displaystyle\frac{12}{a"}=\frac{12}{8}=\frac{3}{2}

----------------------------------------------------------

Then,

a_1 = a\\a_2 = aq\\a_3 = aq^2

Answer 1:

a'_1 = a'=18\\\\a'_2 = a'q'=18$(\displaystyle\frac{2}{3})=12\\\\a'_3 =a'(q')^2= 18(\frac{2}{3})^2=8

Answer 2:

a_1 =a"=8\\\\a_2 = a"q"=8$(\displaystyle\frac{3}{2})=12\\\\a_3 =a"(q")^2= 8(\frac{3}{2})^2=18

See you later ^^)

Study hard!

Anexos:
Perguntas interessantes