Matemática, perguntado por vasiliypetrov592, 10 meses atrás


<br />
\  \textless \ br /\  \textgreater \  x + \sqrt{x} + 1 =  5
Resolva a equação irracional nos conjuntos

dos reais.​

Soluções para a tarefa

Respondido por Gausss
0

Resposta:

\\\boxed{\boxed{\underbrace{x2=\dfrac{9-\sqrt{17} }{2} }}}

Explicação passo-a-passo:

x+\sqrt{x} +1=5\\x+\sqrt{x} =5-1\\x+\sqrt{x} =4\\(\sqrt{x}) ^{2}=(4-x)^2\\x=16-8x+x^2\\x^2-9x+16=0   \\                 \\\Delta= b^2-4ac\\\Delta=(-9)^2-4(1)(16)\\\Delta=81-  64\\\Delta=17\\\\x=\dfrac{-b+-\sqrt{\Delta} }{2a} \\x=\dfrac{-(-9)+-\sqrt{17} }{2} \\\boxed{\boxed{\underbrace{x1=\dfrac{9+\sqrt{17} }{2}}}} \\\boxed{\boxed{\underbrace{x2=\dfrac{9-\sqrt{17} }{2} }}}\\\\\\

Verificando =>>

\dfrac{9+\sqrt{17} }{2} +\sqrt{\dfrac{9+\sqrt{17} }{2} } +1=5\\4,5+\dfrac{\sqrt{17}}{2} +  \dfrac{3+\sqrt[4]{17} }{\sqrt{2} } =4\\4,5+\dfrac{\sqrt{17}}{2} +  \dfrac{3+\sqrt[4]{17} }{\sqrt{2} } =4\\Falso

Veja que 4,5 já é maior que 4, refutando portanto a igualdade.

=>>

\dfrac{9-\sqrt{17} }{2} +\sqrt{\dfrac{9-\sqrt{17} }{2} } +1=5\\\dfrac{9-\sqrt{17} }{2} +\dfrac{\sqrt{9-\sqrt{17} }\times\sqrt{2}  }{\sqrt{2} \times\sqrt{2} }  +1=5\\\dfrac{9-\sqrt{17} }{2} +\dfrac{\sqrt{(9-\sqrt{17}) \times2} }{2 }  +1=5\\\dfrac{9-\sqrt{17} }{2} +\dfrac{\sqrt{(9-\sqrt{17}) \times2} }{2 }  +1=5\\\dfrac{9-\sqrt{17} }{2} +\dfrac{\sqrt{(18-2\sqrt{17}) } }{2 }  +1=5 \\\dfrac{9-\sqrt{17} }{2} +\dfrac{\sqrt{(1-\sqrt{17})^2 } }{2 }  +1=5

\dfrac{9-\sqrt{17} }{2} +\dfrac{\sqrt{(1-\sqrt{17})^2 } }{2 }  +1=5 \\\dfrac{9-\sqrt{17} }{2} +\dfrac{(\sqrt{17}-1)  }{2 }  +1=5 \\4,5-\dfrac{\sqrt{17} }{2} +\dfrac{\sqrt{17}  } {2 }  -\dfrac{1}{2} +1=5\\4,5-\dfrac{1}{2} +1=5\\\boxed{\boxed{\Rightarrow 5=5}}

Perguntas interessantes