Matemática, perguntado por Thaislaine1, 1 ano atrás

 \sqrt[3]{ \frac{2^{31}+ 2^{33}  }{10} }

Como faço para colocar em evidencia o 2^{31}+ 2^{33}<br />
para que ele fique ( 2^{30} * (2^{1} +  2^{3}  )<br />
?

Soluções para a tarefa

Respondido por Lukyo
2
E=\,^{3}\!\!\!\!\sqrt{\dfrac{2^{31}+2^{33}}{10}}\\\\\\ =\,^{3}\!\!\!\!\sqrt{\dfrac{2^{31}+2^{31+2}}{10}}\\\\\\ =\,^{3}\!\!\!\!\sqrt{\dfrac{2^{31}+2^{31}\cdot 2^{2}}{10}}\\\\\\ =\,^{3}\!\!\!\!\sqrt{\dfrac{2^{31}\cdot 1+2^{31}\cdot 2^{2}}{10}}\\\\\\ =\,^{3}\!\!\!\!\sqrt{\dfrac{2^{31}\cdot (1+2^{2})}{10}}\\\\\\ =\,^{3}\!\!\!\!\sqrt{\dfrac{2^{31}\cdot (1+4)}{10}}\\\\\\ =\,^{3}\!\!\!\!\sqrt{\dfrac{2^{31}\cdot 5}{10}}

=\,^{3}\!\!\!\!\sqrt{\dfrac{2^{31}\cdot \diagup\!\!\!\! 5}{2\cdot \diagup\!\!\!\! 5}}\\\\\\ =\,^{3}\!\!\!\!\sqrt{\dfrac{2^{31}}{2^{1}}}\\\\\\ =\,^{3}\!\!\!\sqrt{2^{31-1}}\\\\\\ =\,^{3}\!\!\!\sqrt{2^{30}}\\\\\\ =\,^{3}\!\!\!\sqrt{2^{10\,\cdot\,3}}\\\\\\ =\,^{3}\!\!\!\!\sqrt{(2^{10})^3}\\\\\\ =2^{10}\\\\ =\boxed{\begin{array}{c}1\,024 \end{array}}


Bons estudos! :-)


Thaislaine1: Aaaa... entendi agora! Obrigada!
Lukyo: Por nada! :-)
Perguntas interessantes