Matemática, perguntado por laviniamaria10, 1 ano atrás


se \:  log(8)  = a \: entao \:  log(5)  \: vale
a) {a}^{3}  \\ b)5a - 1 \\ c) \frac{2a}{3}  \\ d) \frac{1 + a}{3} \\ e) \frac{1 - a}{3}

Soluções para a tarefa

Respondido por lucas7661
2

Resposta:

Explicação passo-a-passo:

Resposta:

Explicação passo-a-passo:

log_{b}(x\cdot y)=log_{b}(x)+log_{b}(y)\\\\\\log_{b}(a)=\dfrac{log_{c}(a)}{log_{c}(b)}~~~(mudanca~de~base~de~'b'~para~'c')\\\\\\log_{b}(a)=\dfrac{1}{log_{a}(b)}

__________________________________

log_{10}(8)=a\\\\\\\dfrac{1}{log_{8}(10)}=a\\\\\\\dfrac{1}{log_{8}(2\cdot5)}=a\\\\\\\dfrac{1}{log_{8}(2)+log_{8}(5)}=a\\\\\\\dfrac{1}{(\frac{1}{3})+log_{8}{5}}=a

Vamos multiplicar em cruz:

a\cdot\left[\dfrac{1}{3}+log_{8}(5)\right]=1\\\\\\\dfrac{1}{3}+log_{8}(5)=\dfrac{1}{a}\\\\\\log_{8}(5)=\dfrac{1}{a}-\dfrac{1}{3}\\\\\\log_{8}(5)=\dfrac{3-a}{3a}

Vamos mudar a base para 10:

\dfrac{log~5}{log~8}=\dfrac{3-a}{3a}

Como log 8 = a:

\dfrac{log~5}{a}=\dfrac{3-a}{3a}\\\\\\\boxed{\boxed{log~5=\dfrac{3-a}{3}}}

Perguntas interessantes