Soluções para a tarefa
Resposta:
lim [√(2+∛x) -2]/(x-8)²
x-->8
lim [√(2+∛x) -2]*[√(2+∛x) +2]/(x-8)²[√(2+∛x) +2]
x-->8
lim [√(2+∛x)² -2²]/(x-8)²[√(2+∛x) +2]
x-->8
lim [2+∛x -4]/(x-8)²[√(2+∛x) +2]
x-->8
lim [∛x -2]/(x-8)²[√(2+∛x) +2]
x-->8
***[∛x -2]³=x-6∛x²+12∛x-8
***[∛x -2]³=x-8 -6∛x²+12∛x
***[∛x -2]³=x-8 -6∛x*(∛x-2)
***x-8=[∛x -2]³+6∛x*(∛x-2)
***x-8=[∛x -2]*[(∛x -2)²+6∛x]
***∛x -2=(x-8)/[(∛x -2)²+6∛x]
lim {(x-8)/[(∛x -2)²+6∛x]} /(x-8)²[√(2+∛x) +2]
x-->8⁺
lim {1/[(∛x -2)²+6∛x]} /(x-8)[√(2+∛x) +2]
x-->8⁺
= {1/[(∛8 -2)²+6∛8]} /(8-8)[√(2+∛8) +2]
= {1/[(∛8 -2)²+6∛8]} /(8-8)[√(2+∛8) +2]
= {1/[0+6∛8]} /(8-8)[2 +2]
= {1/[0+6*2]} /(8-8)[4]
= 1/[0+6*2]} /(0⁺)[4]
= 1/0⁺
= +∞
__________________________________________________
lim {(x-8)/[(∛x -2)²+6∛x]} /(x-8)²[√(2+∛x) +2]
x-->8⁻
lim {1/[(∛x -2)²+6∛x]} /(x-8)[√(2+∛x) +2]
x-->8⁻
= {1/[(∛8 -2)²+6∛8]} /(8-8)[√(2+∛8) +2]
= {1/[0+6∛8]} /(8-8)[2 +2]
= {1/[0+6*2]} /(8-8)[4]
= 1/[0+6*2]} /(0⁻)[4]
= 1/0⁻
= -∞
Os limites Laterais são diferentes, este limite não existe