Soluções para a tarefa
Respondido por
1
Olá
![\lim_{x \to 1} \frac{ \sqrt{3x+1}-2 }{x^2-3x-4} = \frac{0}{0} \\ \\ Temos~ que ~multiplicar~ pelo ~conjugado~ para ~tirar ~a~ \\ raiz~do~numerador \\ \\ \lim_{x \to 1} \frac{ \sqrt{3x+1}-2 }{x^2-3x-4} ~\cdot~ \frac{ \sqrt{3x+1}+2 }{ \sqrt{3x+1}+2 } \\ \\ \lim_{x \to 1} \frac{ (\sqrt{3x+1})^2-(2)^2 }{(x^2-3x-4)( \sqrt{3x+1} +2)} \\ \\ \lim_{x \to 1} \frac{ 3x+1-4 }{x^2-3x-4( \sqrt{3x+1}+2 )} \lim_{x \to 1} \frac{ \sqrt{3x+1}-2 }{x^2-3x-4} = \frac{0}{0} \\ \\ Temos~ que ~multiplicar~ pelo ~conjugado~ para ~tirar ~a~ \\ raiz~do~numerador \\ \\ \lim_{x \to 1} \frac{ \sqrt{3x+1}-2 }{x^2-3x-4} ~\cdot~ \frac{ \sqrt{3x+1}+2 }{ \sqrt{3x+1}+2 } \\ \\ \lim_{x \to 1} \frac{ (\sqrt{3x+1})^2-(2)^2 }{(x^2-3x-4)( \sqrt{3x+1} +2)} \\ \\ \lim_{x \to 1} \frac{ 3x+1-4 }{x^2-3x-4( \sqrt{3x+1}+2 )}](https://tex.z-dn.net/?f=+%5Clim_%7Bx+%5Cto+1%7D++%5Cfrac%7B+%5Csqrt%7B3x%2B1%7D-2+%7D%7Bx%5E2-3x-4%7D+%3D+%5Cfrac%7B0%7D%7B0%7D++%5C%5C++%5C%5C+Temos%7E+que+%7Emultiplicar%7E+pelo+%7Econjugado%7E+para+%7Etirar+%7Ea%7E++%5C%5C+raiz%7Edo%7Enumerador+%5C%5C++%5C%5C+%5Clim_%7Bx+%5Cto+1%7D++%5Cfrac%7B+%5Csqrt%7B3x%2B1%7D-2+%7D%7Bx%5E2-3x-4%7D+%7E%5Ccdot%7E+%5Cfrac%7B+%5Csqrt%7B3x%2B1%7D%2B2+%7D%7B+%5Csqrt%7B3x%2B1%7D%2B2+%7D++%5C%5C++%5C%5C+%5Clim_%7Bx+%5Cto+1%7D++%5Cfrac%7B+%28%5Csqrt%7B3x%2B1%7D%29%5E2-%282%29%5E2+%7D%7B%28x%5E2-3x-4%29%28+%5Csqrt%7B3x%2B1%7D+%2B2%29%7D+%5C%5C++%5C%5C+%5Clim_%7Bx+%5Cto+1%7D++%5Cfrac%7B+3x%2B1-4+%7D%7Bx%5E2-3x-4%28+%5Csqrt%7B3x%2B1%7D%2B2+%29%7D+)
Dividindo os polinômios por x-1 iremos encontrar
3x-3 ÷ x-1 = 3
x²+3x-4 ÷ x-1 = x+4
Substituindo no limite
![\mathtt{\lim_{x \to 1} ~ \frac{ \diagup\!\!\!\!\!\!\!\!\!\!(x-1)\cdot(3) }{\diagup\!\!\!\!\!\!\!\!\!\!(x-1)\cdot(x+4)( \sqrt{3x+1}+2 )}} \\ \\ \lim_{x \to 1} \frac{ 3 }{(x+4)( \sqrt{3x+1}+2 )}= \frac{3}{(1+4)( \sqrt{4}+2 )} = \frac{3}{5(2+2)} = \boxed{\frac{3}{20} } \mathtt{\lim_{x \to 1} ~ \frac{ \diagup\!\!\!\!\!\!\!\!\!\!(x-1)\cdot(3) }{\diagup\!\!\!\!\!\!\!\!\!\!(x-1)\cdot(x+4)( \sqrt{3x+1}+2 )}} \\ \\ \lim_{x \to 1} \frac{ 3 }{(x+4)( \sqrt{3x+1}+2 )}= \frac{3}{(1+4)( \sqrt{4}+2 )} = \frac{3}{5(2+2)} = \boxed{\frac{3}{20} }](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Clim_%7Bx+%5Cto+1%7D+%7E+%5Cfrac%7B+%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%28x-1%29%5Ccdot%283%29+%7D%7B%5Cdiagup%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%28x-1%29%5Ccdot%28x%2B4%29%28+%5Csqrt%7B3x%2B1%7D%2B2+%29%7D%7D+%5C%5C++%5C%5C+%5Clim_%7Bx+%5Cto+1%7D++%5Cfrac%7B+3+%7D%7B%28x%2B4%29%28+%5Csqrt%7B3x%2B1%7D%2B2+%29%7D%3D+%5Cfrac%7B3%7D%7B%281%2B4%29%28+%5Csqrt%7B4%7D%2B2+%29%7D+%3D+%5Cfrac%7B3%7D%7B5%282%2B2%29%7D+%3D+%5Cboxed%7B%5Cfrac%7B3%7D%7B20%7D+%7D)
Dividindo os polinômios por x-1 iremos encontrar
3x-3 ÷ x-1 = 3
x²+3x-4 ÷ x-1 = x+4
Substituindo no limite
Perguntas interessantes
Ed. Física,
11 meses atrás
Química,
11 meses atrás
História,
11 meses atrás
Biologia,
1 ano atrás
Português,
1 ano atrás