![\large\textsf{Desenvolva a seguinte equa\c{c}\~ao exponencial:} \large\textsf{Desenvolva a seguinte equa\c{c}\~ao exponencial:}](https://tex.z-dn.net/?f=%5Clarge%5Ctextsf%7BDesenvolva+a+seguinte+equa%5Cc%7Bc%7D%5C%7Eao+exponencial%3A%7D)
![\huge\fbox{$\mathsf{3^{2x+1}=2}$} \huge\fbox{$\mathsf{3^{2x+1}=2}$}](https://tex.z-dn.net/?f=%5Chuge%5Cfbox%7B%24%5Cmathsf%7B3%5E%7B2x%2B1%7D%3D2%7D%24%7D)
*equação exponencial, logaritmo, log*
Soluções para a tarefa
Respondido por
0
podemos resolver utilizando logaritmo na base 3 (aplicando nos dois lados da equação):
![\displaystyle 3^{2x+1}=2\implies \log_33^{2x+1}=\log_32 \displaystyle 3^{2x+1}=2\implies \log_33^{2x+1}=\log_32](https://tex.z-dn.net/?f=%5Cdisplaystyle+3%5E%7B2x%2B1%7D%3D2%5Cimplies+%5Clog_33%5E%7B2x%2B1%7D%3D%5Clog_32)
agora só resolver:
![\displaystyle \log_33^{2x+1}=\log_32\implies (2x+1)\cdot\log_33=\log_32\implies \\\\(2x+1)\cdot1=\log_32\implies2x+1=\frac{\ln2}{\ln3}\implies 2x=\frac{\ln2}{\ln3}-1\implies 2x\approx0,63092...-1\implies \\\\x=\frac{-0,36907...}{2}=\boxed{-0,18453512...} \displaystyle \log_33^{2x+1}=\log_32\implies (2x+1)\cdot\log_33=\log_32\implies \\\\(2x+1)\cdot1=\log_32\implies2x+1=\frac{\ln2}{\ln3}\implies 2x=\frac{\ln2}{\ln3}-1\implies 2x\approx0,63092...-1\implies \\\\x=\frac{-0,36907...}{2}=\boxed{-0,18453512...}](https://tex.z-dn.net/?f=%5Cdisplaystyle+%5Clog_33%5E%7B2x%2B1%7D%3D%5Clog_32%5Cimplies+%282x%2B1%29%5Ccdot%5Clog_33%3D%5Clog_32%5Cimplies+%5C%5C%5C%5C%282x%2B1%29%5Ccdot1%3D%5Clog_32%5Cimplies2x%2B1%3D%5Cfrac%7B%5Cln2%7D%7B%5Cln3%7D%5Cimplies+2x%3D%5Cfrac%7B%5Cln2%7D%7B%5Cln3%7D-1%5Cimplies+2x%5Capprox0%2C63092...-1%5Cimplies+%5C%5C%5C%5Cx%3D%5Cfrac%7B-0%2C36907...%7D%7B2%7D%3D%5Cboxed%7B-0%2C18453512...%7D+)
prova real:
![\displaystyle 3^{(2\cdot(-0,184535...)+1)}=3^{0,63092...}=2 \displaystyle 3^{(2\cdot(-0,184535...)+1)}=3^{0,63092...}=2](https://tex.z-dn.net/?f=%5Cdisplaystyle+3%5E%7B%282%5Ccdot%28-0%2C184535...%29%2B1%29%7D%3D3%5E%7B0%2C63092...%7D%3D2)
ou seja:
![\boxed{x=-0,18453512321427128145023644282862} \boxed{x=-0,18453512321427128145023644282862}](https://tex.z-dn.net/?f=%5Cboxed%7Bx%3D-0%2C18453512321427128145023644282862%7D)
agora só resolver:
prova real:
ou seja:
acidbutter:
PS: dá pra simplificar o 0,63092.. por 0,631 (mas não vai ficar um 2 redondo)
Respondido por
0
Caso tenha problemas para visualizar a resposta, experimente abrir pelo navegador: http://brainly.com.br/tarefa/7578247
Tags: equação logarítmica logaritmo mudança base solução resolver álgebra
Perguntas interessantes