Matemática, perguntado por viniciushenrique406, 1 ano atrás

\Large\textsf{~Demonstre:}\\\\\\\\\Large\begin{array}{l}\begin{vmatrix}<br />
\mathsf{a~~a~~a~~a} \\ <br />
\mathsf{a~~b~~b~~b} \\ <br />
\mathsf{a~~b~~c~~c} \\ <br />
\mathsf{a~~b~~c~~d}<br />
\end{vmatrix}}\end{array}\mathsf{=a(b-a)(c-b)(d-c)}


*Matrizes, propriedades, regra de Chió*

Soluções para a tarefa

Respondido por DanJR
0
Olá!

Por triangularização, devemos deixar todos os elementos da diagonal principal valendo 1 e o elementos abaixo dela deverão ser nulos. E, para que não alteremos o determinante, devemos multiplicá-lo pelo mesmo valor que o dividimos (na linha).
 
 Segue,

\\ \mathsf{\Delta} = \begin{vmatrix} a &amp; a &amp; a &amp; a \\ a &amp; b &amp; b &amp; b \\ a &amp; b &amp; c &amp; c \\ a &amp; b &amp; c &amp; d \end{vmatrix} \\\\\\ \mathsf{\Delta} = \begin{vmatrix} a &amp; a &amp; a &amp; a \\ a &amp; b &amp; b &amp; b \\ a &amp; b &amp; c &amp; c \\ a &amp; b &amp; c &amp; d \end{vmatrix} \quad \mathsf{L_1 \leftarrow \frac{1}{a} \cdot L_1}

\\ \mathsf{\Delta = a \cdot} \begin{vmatrix} 1 &amp; 1 &amp; 1 &amp; 1 \\ a &amp; b &amp; b &amp; b \\ a &amp; b &amp; c &amp; c \\ a &amp; b &amp; c &amp; d \end{vmatrix} \quad \mathsf{L_2 \leftarrow L_2 - a \cdot L_1 \ \wedge \ L_3 \leftarrow L_3 - a \cdot L_1 \ \wedge \ L_4 \leftarrow L_4 - a \cdot L_1} \\\\\\ \mathsf{\Delta = a \cdot} \begin{vmatrix} 1 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; b - a &amp; b - a &amp; b - a \\ 0 &amp; b - a &amp; c - a &amp; c - a \\ 0 &amp; b - a &amp; c - a &amp; d - a \end{vmatrix} \quad \mathsf{L_2 \leftarrow \frac{1}{(b - a)} \cdot L_2}

\\ \mathsf{\Delta = a \cdot (b - a) \cdot} \begin{vmatrix} 1 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; b - a &amp; c - a &amp; c - a \\ 0 &amp; b - a &amp; c - a &amp; d - a \end{vmatrix} \\\\\\ \mathsf{\Delta = a \cdot (b - a) \cdot} \begin{vmatrix} 1 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; b - a &amp; c - a &amp; c - a \\ 0 &amp; b - a &amp; c - a &amp; d - a \end{vmatrix} \quad \mathsf{L_3 \leftarrow L_3 - (b - a) \cdot L_2 \ \wedge \ L_4 \leftarrow L_4 - (b - a) \cdot L_2}

\\ \mathsf{\Delta = a \cdot (b - a) \cdot} \begin{vmatrix} 1 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; c - a - (b - a) &amp; c - a - (b - a) \\ 0 &amp; 0 &amp; c - a - (b - a) &amp; d - a - (b - a) \end{vmatrix} \\\\\\ \mathsf{\Delta = a \cdot (b - a) \cdot} \begin{vmatrix} 1 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; c - b &amp; c - b \\ 0 &amp; 0 &amp; c - b &amp; d - b \end{vmatrix} \quad \mathsf{L_3 \leftarrow \frac{1}{c - b} \cdot L_3}

\\ \mathsf{\Delta = a \cdot (b - a) \cdot (c - b) \cdot } \begin{vmatrix} 1 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; c -b &amp; d - b \end{vmatrix} \quad \mathsf{L_4 \leftarrow L_4 - (c - b) \cdot L_3} \\\\\\ \mathsf{\Delta = a \cdot (b - a) \cdot (c - b) \cdot} \begin{vmatrix} 1 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 0 &amp; d - b - (c - b) \end{vmatrix}
 
\\ \mathsf{\Delta = a \cdot (b - a) \cdot (c - b) \cdot } \begin{vmatrix} 1 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 0 &amp; d - c \end{vmatrix} \quad \mathsf{L_4 \leftarrow \frac{1}{(d - c)} \cdot L_4} \\\\\\ \mathsf{\Delta = a \cdot (b - a) \cdot (c - b) \cdot (d - c) \cdot} \begin{vmatrix} 1 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 1 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 1 &amp; 1 \\ 0 &amp; 0 &amp; 0 &amp; 1 \end{vmatrix}


 Por fim, efectuamos as multiplicações, veja:

\\ \mathsf{\Delta = a \cdot (b - a) \cdot (c - b) \cdot (d - c) \cdot 1 \cdot 1 \cdot 1 \cdot 1} \\\\ \boxed{\boxed{\mathsf{\Delta = a(b - a)(c - b)(d - c)}}} 



viniciushenrique406: Muito obrigado por dedicar um tempo para essa demonstração, ela é meio trabalhosa kkkkk =D
DanJR: Kkkk... Não há de quê!
Perguntas interessantes