Matemática, perguntado por Audazvacha, 1 ano atrás


integral \frac{senx + cosx}{ \sqrt[3]{senx - cosx} } dx


Audazvacha: sim.
Audazvacha: nao tem nada de errado ta assim mesmo.

Soluções para a tarefa

Respondido por DanJR
1

Resposta:

\boxed{\mathsf{\frac{3}{2} \cdot \sqrt[3]{(\sin x - \cos x)^2} + C}}

Explicação passo-a-passo:

A resposta sai por substituição simples. Desse modo, tome \mathbf{\sin x - \cos x = \lambda}.

Derivando,

\\ \mathsf{\sin x - \cos x = \lambda} \\\\ \mathsf{[\cos x - (- \sin x)] dx = d\lambda}} \\\\ \mathsf{(\cos x + \sin x) dx = d\lambda}


Substituindo na integral,

\\ \displaystyle \mathsf{\int \frac{\sin x + \cos x}{\sqrt[3]{\sin x - \cos x}} dx = \int \frac{d\lambda}{\sqrt[3]{\lambda}}} \\\\\\ \mathsf{= \int \frac{1}{\lambda^{\frac{1}{3}}} d\lambda} \\\\\\ \mathsf{= \int \lambda^{- \frac{1}{3}} d\lambda} \\\\\\ \mathsf{= \frac{3}{2} \cdot \lambda^{- \frac{1}{3} + 1} + C} \\\\\\ \mathsf{= \frac{3}{2} \cdot \lambda^{\frac{2}{3}} + C}

\\ \displaystyle \mathsf{= \frac{3}{2} \cdot \sqrt[3]{\lambda^2} + C} \\\\\\ \boxed{\boxed{\mathsf{\int \frac{\sin x + \cos x}{\sqrt[3]{\sin x - \cos x}} dx = \frac{3}{2} \cdot \sqrt[3]{(\sin x - \cos x)^2} + C}}}

Perguntas interessantes