Matemática, perguntado por Lhering, 1 ano atrás

 \frac{4 \sqrt{2} }{8\sqrt{8} }


Obs: Já estou ciente do gabarito, apenas estou fazendo um trabalho que deduz dificuldades em matemática dos alunos do Ensino Fundamental

Soluções para a tarefa

Respondido por Franklingg
0
Primeiro você pode simplificar a fração 4 e 8, por 4, por exemplo, ficaria:
 \frac{4 \sqrt{2} }{8 \sqrt{8}  } [simpl:4]
 \frac{ \sqrt{2} }{2 \sqrt{8} }
Agora você pode racionalizar o denominador, de forma a tirar essa raiz quadrada de 8 do denominador. Para isso, só precisamos criar uma fração em que o numerador e o denominador sejam esse número que queremos tirar, que no caso é raiz quadrada de 8.
 \frac{ \sqrt{2} }{2 \sqrt{8} } . \frac{ \sqrt{8} }{ \sqrt{8} }
Como  \sqrt{8} . \sqrt{8} = \sqrt{64} =8
 \frac{ \sqrt{2.8} }{16}
 \frac{ \sqrt{16} }{16}
 \frac{4}{16}
simplificando por 4:
 \frac{1}{4}
Ou você pode fazer de outra maneira, sem racionalizar:
Daquela fração simplificada lá em cima:
 \frac{ \sqrt{2} }{2 \sqrt{8} }
Se fatorarmos o 8, temos 2³ ou 2².2, portanto, como 2²=4 e \/4=2:
 \frac{ \sqrt{2} }{2  \sqrt{ 2^{2} .2}  }
 \frac{ \sqrt{2} }{2.2 \sqrt{2} }
Ora, se dividirmos raiz de 2 por raiz de 2 temos 1, então:
 \frac{1}{4}

Perguntas interessantes